You are here: Service / News

ISEAT 2023

Announcement for postponement of 8th International Symposium on ElectroAcoustic Technology (ISEAT)

 

The 8th ISEAT is postponed to later dates to be determined, meanwhile, the venue and agenda would be all the same. Due to the current epidemic situation of COVID-19 in Shenzhen and several major cities in China, the ISEAT committee has decided to postpone the 8th International Symposium on ElectroAcoustic Technologies

Please continue to view the ISEAT website: www.iseat.org to get the latest news related to the 8th ISEAT. 

 


With a combination of online and offline methods, ISEAT will effectively enhance the communication and exchange of the industry, and stimulate new ideas in the convergence of academics and industry between China and the rest of the world. Be part of the conference and meet our engineers digitally and join their presentations. Discover more on the official ISEAT website!

 


General Information 

Date: Is postponed to 2023 at a later date!
Location: Shenzhen, China
Program Overview – Please click here! (Soon available)
Registration is now open – Please click here!


Our program recommendation 

Modeling Balanced Armature Transducers at High Amplitudes by Wolfgang Klippel

Abstract:Electromagnetic transducers using a balanced armature play an important role in hearing aids and in-ear headphones because they generate the required sound output at high efficiency. This paper investigates the transfer behavior at high amplitudes and develops a lumped parameter model of this transducer that considers the nonlinearities caused by the geometry and material properties. This model is a basis for optimal transducer design, adjusting the armature in production and actively canceling the nonlinear distortion through nonlinear, adaptive control.

Creating Audio Products with Maximum End-User Value by Wolfgang Klippel

Abstract: The value assigned by the end-user to a loudspeaker, headphone, or any other audio device determines his purchase decision and the success of the product in the market. The paper investigates the relationship between end-user value, performance characteristics, cost structure, and the particular design. A model based on a modified benefit-cost ratio is presented that describes the impact (sensitivity) of the performance characteristics on the end-user value. Performance sensitivity is a central and powerful term in audio engineering because it links physical, perceptual, and economical quantities. This new concept is applied to all phases of the product life and addresses open questions on how to define the optimum target performance, select design choices, increase the yield rate in production, and assuring reliability and quality in the final application.

Multi-Domain Transducer Measurement by Wolfgang Klippel

Abstract: Traditional loudspeaker tests measure electrical signals at the terminals and the acoustical output at a few points in the far-field under anechoic conditions. Those measurements are sufficient to derive the frequency response and the lumped transducer parameters. Modern robotics will provide new test opportunities: Near-field scanning combined with sound wave modeling and wave separation speeds up the directivity measurements and provides accurate results without using an anechoic room. A Multi-Scanning workbench applies this method to transducers mounted in a small baffle and provides simulated half-space conditions by compensating for edge reflections, acoustical shortcuts, and minimizing baffle vibration. The direct sound radiated into 3D space can be reconstructed by a few measurements in the near field exploiting the symmetry found in transducers with a round, oval or rectangular cone shape. The workbench uses robotics also for scanning mechanical vibration with a triangulation laser sensor complemented by electrical measurement. A series of tests automatically performed at a clamped device provides a comprehensive assessment of the 3D sound field in a few minutes, including linear and nonlinear lumped parameters, mechanical vibration, nonlinear distortion, and abnormal sound (rub&buzz). The robotics can be easily modified for scanning the magnetic B-field in the magnetic gap, the velocity profile at the port, and other applications. Multi-scanning brings the essential functionality of a lab into an all-in-one measurement instrument that works in almost any environment if required also at your home.

Transducer nonlinearities in active sound applications by Joachim Schlechter

Abstract: Modern DSP algorithms used for active cancellation of echoes (AEC) and noise (ANC), beam steering, 3D sound reproduction, or multi-zone contrast control model the loudspeaker and headphone used as a linear system. However, the nonlinearities inherent in the electro-acoustical transducer generate significant nonlinear distortion in the error signal of the adaptive cancelation systems of the above algorithms. It becomes audible as a distorted echo, residual noise, and undesired program material in a silent zone or reduces the recognition rate of wake-up commands in smart speakers. This problem can be avoided by using more linear transducers with a larger size, lower efficiency, or higher cost. This paper investigates an alternative solution by using nonlinear control (e.g., Klippel Controlled Sound) in the DSP to actively cancel the nonlinear distortion, protect the electro-acoustical transducer against overload, and generate a desired linear overall response which is constant over product life.