Home / 专业知识 / 测量 / 功率处理和散热 / 热参数测量

热参数测量

特性:

KLIPPEL R&D系统

音圈和磁铁的热阻

 

LSI(适用于DA), PWT 

音圈和磁铁的热容

 

LSI(适用于DA), PWT  

空气对流冷却系数

 

LSI(适用于DA), PWT  

涡流加热系数

LSI(适用于DA), PWT  

大多数电声换能器效率低,并将大部分电能转化为热量。因此,线圈的发热限制了功率处理和换能器的最大输出。可以通过包括热阻、电容和电源的等效电路对热动力进行建模。低音圈电阻Rtv、高电容Ctv以及由非线性电阻Rtc(v)中的强制对流冷却产生的高旁路系数支持音圈的冷却。


KLIPPEL R&D系统 (开发)

模组

备注

大信号识别(适用于DA的LSI)

LSI(适用于DA)提供了一个特殊的热识别模式,可以自动识别主要的热参数。使用不同的噪声激励信号,测量将包含多个ON/OFF循环过程。输入功率和测量时间可以针对特定的换能器进行自动调整。所有状态变量(温度、位移、输入功率、电压和电流)在测量期间被监测。

功率测试 (PWT)

PWT不能直接提供热参数,但是给出了音圈温度和输入功率与测量时间的关系。需要额外的后处理来计算热参数(详细信息在2004年KLIPPEL关于非线性热学模型的论文中进行了描述)。



KLIPPEL产品模板

模板名称

应用

Diagnost. MIDRANGE Sp1

使用标准电流传感器1对谐振频率在30 Hz < fs < 200 Hz之间的中频驱动单元进行全面的测试

Diagnost. SUBWOOFER (Sp1)

使用标准电流传感器1对谐振频率在10 Hz < fs < 70 Hz之间的超低音喇叭进行全面的测试

Diagnostics MICROSPEAKER Sp2

使用灵敏电流传感器2对谐振频率在100 Hz < fs < 2 kHz之间的微型扬声器进行全面的测试

Diagnostics TWEETER (Sp2)

使用灵敏电流传感器2对谐振频率在100 Hz < fs < 2 kHz之间的高音扬声器进行全面的测试

Diagnostics VENTED BOX SP1

使用标准电流传感器1对开口箱系统进行全面的测试

Diagnostics WOOFER (Sp1)

使用标准电流传感器1对谐振频率在30 Hz < fs < 200 Hz之间的超低音扬声器进行全面的测试

Diagnostics WOOFER Sp1,2

使用电流传感器1和2对谐振频率在30 Hz < fs < 200 Hz之间的超低音扬声器进行全面的测试

Thermal Parameters (woofer)

根据识别的低音扬声器热参数对热传递行为进行分析

Thermal Parameters AN 18

根据应用笔记AN18,使用PWT模块测量热参数

Thermal Parameters AN 19

根据应用笔记AN19,使用PWT模块测量热参数

LSI Woofer Nonl.+Therm. Sp1

使用标准电流传感器SP1测量低音扬声器 (fs < 300 Hz)的非线性和热参数

LSI Woofer+Box Nonl. P Sp1

使用标准电流传感器SP1测量在自由空气、密闭或开口箱中工作的低音扬声器 (fs < 300 Hz)的非线性参数

SIM Therm. Analysis (1 tone)

基于LSI导入的热参数,使用单音激励信号仿真热传递行为

SIM Therm. Analysis (2 tone)

基于LSI导入的热参数,使用双音激励信号仿真热传递行为

PWT Powtest (fast Temp.)

使用馈入到IN1中的外部连续信号 (噪声)进行功率测试以快速监测温度、功率和电阻

PWT Powtest SWEEP

使用低波峰系数的扫频信号进行功率测试以监测音圈的热时间常数

PWT Powtest TIME Const.

使用循环 (ON/OFF时段)的内部测试信号进行功率测试来测量音圈的时间常数


标准

音频工程学会
AES2 Recommended practice Specification of Loudspeaker Components Used in Professional Audio and Sound Reinforcement (AES2推荐的用于专业音频和声音增强的扬声器组件的实用规范)

消费电子协会
CEA-426-B Loudspeakers, Optimum Amplifier Power (CEA-426-B 扬声器,最佳放大器功率)

欧洲电信标准化协会
EIA 426B Loudspeaker Power Rating Test CD provided by ALMA International (EIA 426B 由ALMA国际提供的扬声器功率相关测试CD)

国际电工委员会
IEC 60268-5 Sound System Equipment, Part 5: Loudspeakers (IEC 60268-5声音系统设备,第5部分: 扬声器)




论文和预印本

W. Klippel, “Nonlinear Modeling of the Heat Transfer in Loudspeakers,” J. of Audio Eng. Soc. 52, Volume 1, 2004 January.

Y. Shen, “Accelerated Power Test Analysis Based on Loudspeaker Life Distribution,” presented at the 124th Convention of Audio Eng. Soc., May 2008, Preprint 7345.

C. Zuccatti, “Thermal Parameters and Power Ratings of Loudspeakers,” J. of Audio Eng. Soc., Volume 38, No. 1, 2, 1990 January/February.

P. J. Chapman, “Thermal Simulation of Loudspeakers,” presented at the 104th Convention of Audio Eng. Soc., May 1998, Preprint 4667.

G. Behler, A. Bernhard, “Measuring Method to derive the Lumped Elements of the Loudspeaker Thermal Equivalent Circuit,” presented at the 104th Convention of Audio Eng. Soc., 1998 May 16-19, Amsterdam, Preprint 4744.

G. Behler, “Measuring the Loudspeaker's Impedance During Operation for the Derivation of the Voice Coil Temperature,” presented at the 98th Convention of Audio Eng. Soc.,1995 February 25-28, Paris, Preprint 4001.

K. M. Pedersen, “Thermal Overload Protection of High Frequency Loudspeakers,” Report of Final Year Dissertation at Salford University.

Henricksen, “Heat Transfer Mechanisms in Loudspeakers: Analysis, Measurement and Design,” J. of Audio Eng. Soc., Volume 35, No. 10, 1987 October.