Thermal Parameter Measurement AN18

Application Note to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.5)

The lumped parameters of the thermal equivalent circuit are measured by using Power Test Module (PWT). The high-speed temperature monitoring makes it possible to measure voice coil resistance R_{TV} and the capacity C_{TV} of woofers, tweeters, headphones, tele-communication drivers and other transducers having a very short time constant. The regular monitoring with adjustable sample rate also allows to measure the parameters of the magnet and frame having usually a very long time constant. The temperature monitoring is based on the measurement of the electrical impedance at 1 Hz.

CONTENT

1	Thermal Modeling	. 2
2	Using the Power Test Module (PWT)	. 3
3	Parameter Calculation	. 5
4	Setup Parameters for the Template Measurement	. 7
5	More Information	. 7

AN18

1 Thermal Modeling

Equivalent Circuit	T _v
	$ P R_{tv} \stackrel{>}{\leq} C_{tv} \stackrel{-}{+} $
	\bigtriangledown $T_{\rm M}$ $\Delta T_{\rm v}$
	$\Delta T_{m} \mid R_{tm} \leq C_{tm} \perp$
	T _a
	The equivalent circuit presented above is used for modeling the thermal behaviors of transducers. This simple model represents the complex
	temperature field by the mean temperature T_v of the voice coil and the mean temperature T_M of the magnet, pole pieces and frame. This model considers two paths of the heat flow. The main part of the heat goes via the voice coil pole.
	pieces, magnet and frame to the environment. The second path is the convection cooling transferring the heat from the voice coil directly into the moved air.
	We neglect the following processes:
	 direct heating of the pole pieces and short cut ring by induced eddy currents
	convection cooling
	 distribution of the heat on the voice coil and on the magnet and frame structure
State Variables	$P \approx P_{RE}(t)=i_{rms}^2 R_E$ real electric input power dissipated in voice coil resistance R_E
	i _{rms} rms value of input current
	$T_m(t)$ temperature of the magnet structure
	$\Delta T_v(t) = T_v(t) - T_a$ increase of voice coil temperature
	$\Delta T_m(t) = T_m(t)-T_a$ increase of the temperature of magnet structure and frame T_a temperature of the cold transducer (ambient temperature)
Thermal	R _{tv} thermal resistance of path from coil to magnet structure
Parameters	R _{tm} thermal resistance of magnet structure to ambient air C _{tv} thermal capacitance of voice coil and nearby surroundings
	C_{tm} thermal capacitance of magnet structure
Steady-State	Applying a stimulus with constant spectral properties the thermal system will go
Benavior	the thermal resistances R_{TV} and R_{TM} determine the steady-state voice coil
	temperature
	$\Delta T_{vss} = (R_{TV} + R_{TM})P_{RE}$
	and the steady-state magnet temperature
	$\Delta T_{MSS} = R_{TM} P_{RE}$
	with P_{RE} is the power dissipated in R_E .
Dynamics	The variation of the temperature $T_M(t)$ and $T_V(t)$ versus measurement time t after switching on and off the input power $P \approx P_{RE}$ reveals the thermal capacities C_{TV} and C_{TM} .

	After switching on the input power $P=P_{ON}$ at the time $t=t_{S_ON}$ the temperature ΔT_M of the magnet increases by an exponential function
	$\Delta T_M(t) = \Delta T_{MSS} (1 - e^{-(t - t_{S_ON})/\tau_M})$
	to the steady-state temperature $\Delta T_{\text{MSS}}.$ The time constant of the magnet structure is defined by
	$\tau_M = R_{TM} C_{TM}.$
	After switching off the input power at the time $t{=}t_{S_OFF}$ the temperature difference
	$\Delta T_{\nu}(t) - \Delta T_{M}(t) = (\Delta T_{VSS} - \Delta T_{MSS}) e^{-(t - t_{S_oFF})/\tau_{\nu}}$
	between voice coil and frame/magnet decreases by an exponential function with the time constant
	$\tau_{v} = R_{TV} C_{TV}.$
Equivalent masses	After determining the thermal capacity of the voice coil $C_{\mbox{\tiny TV}}$ we may calculate the equivalent mass of copper by
	$m_{copper} = 2.7 C_{TV}$
	where m_{copper} is in gram and C_{TV} is in Ws/Kelvin.
	Assuming pure steel for the frame/magnet structure we calculate the equivalent mass of steel by
	$m_{Steel} = 2 C_{TM}$
	where m_{steel} is in gram and C_{TM} is in Ws/Kelvin.
Principle	For the measurement of the thermal parameters we use a noise signal representing normal audio material as defined by IEC 60268. The measurement is performed by the following steps.
	1. In the first step we determine the voltage of the stimulus at the transducer terminals giving a reasonable increase of the voice coil temperature ($50 - 100$ Kelvin) permissible for the transducer.
	2. In the second step we apply the noise at the voltage U and heat up the voice coil and the magnet/frame structure to the equilibrium state.
	3. In the third step we activate the high speed temperature monitoring and record the voice coil temperature response after switching off the input power.
	 4. Based on the measured temperature responses we calculate the thermal parameters

2 Using the Power Test Module (PWT)

Requirements	The following hardware and software is required for assessing Xmax	
	Power Test Monitor PM 8 + PC	
	 Software module Power Test (PWT) + dB-Lab 	
Setup	Connect the microphone to the input IN1 at the rear side of the DA. Set the speaker in the approved environment and connect the terminals with SPEAKER 1. Switch the power amplifier between OUT1 and connector AMPLIFIER.	
Preparation	 Open dB-Lab Create a new object DRIVER based on the template Thermal Parameters AN 18. 	
Measurement	 Start the 1st measurement " 1st: Find test voltage ". During the measurement the amplitude of the stimulus will be increased by 2dB steps after a cycle time of 30 s. If the voice coil resistance is increased to 130 % corresponding to an increase of the voice coil temperature of 80 	

AN18

Kelvin the measured will be interrupted automatically and a exception message "Driver Failure" will be generated.
 Open the result window "Voltage, Current" and read the rms voltage UTEST where the voice coil temperature is about 80 Kelvin.
3. Break. The loudspeaker should cool down.
4. Open the property page "Stimulus" of the second measurement "2 nd :
Parameter Measurement " and enter the starting voltage U_{Start} = $U_{Test.}$ Start
the second measurement.
5. Open the result window "Power, Temperature". Read the voice coil
temperature at the end of the ON-phase. If we get similar values at
successive ON-phases the speaker is in thermal equilibrium. After
beginning the next ON-phase open the property page "Method". Select
the fast speed temperature monitoring to be able to measure the cooling
characteristic at high resolution. The temperature measurement in the
ON-phase might become noisier. Under Temperature Window press the
button Start to activate the next detailed temperature monitoring at the
start of the next OFF-phase.
6. After finishing the OFF-phase the second measurement may be finished.

3 Parameter Calculation

1. Select the second measurement "2nd Thermal Parameters" and open the Steady-State **Temperatures** result window "Power Temperature". Ensure that the driver was in the thermal equilibrium and the temperature has converged to the final value. Increase of voice coil temperature Delta Tv (t) and electrical input power P (t) $_{DUT:\,1}~(01:27:22)$ Delta T munum And Man Marked MMM www.humminuminu 2.5 75 2,0 50 1,5 1,0 0,5 0 500 1000 1500 2000 2500 t [sec] 3000 3500 4000 4500 5000 2. Activate the cursor by using the right mouse button and read the temperature of the coil $\Delta T_{VSS} = \Delta T_V(t_{S ON})$ at the end of the ON-phase t=ts ON. Ensure that the driver is in the thermal equilibrium by comparing the final temperatures of previous two ON-phases. Delta Tv [K] 100 KLIPPEL 75 ΔT_{VSS} 50 25 2500 3000 t [sec] 4500 0 500 1000 1500 2000 3500 4000 5000 3. Use the cursor to read the power P_{ON} during the ON-phase from curve "PRE" in the PWT measurement. Wall And Margaret PON 2.0 1,5 1,0 0.5 0.0 4000 4500 0 500 1000 1500 2000 2500 3000 t [sec] 3500 5000 Open the result window "Temperature Detail" showing the cooling down **Resistances R_{TM}** 4. response at the beginning of the OFF-phase. The early decay is caused by and R_{TV} the time constant of the voice coil. The magnet/frame structure causes a second decay at later times due to the higher time constant. Approximate the early decay by a straight line. Read the early decay time T_{slope} of the slope. Read the temperature $\Delta T_{MSS} = \Delta (t_{S OFF} + 5t_{slope})$ at approximately 5 times of t_{slope} to ensure that the voice coil is in thermal equilibrium. If the time $t_{S_OFF}+t_{slope}$ is not displayed on the results window "Temperature Detail" use the cursor in the regular window "Power, Temperature" to find ΔT_{MSS} .

AN18

$C_{TM} = \frac{\tau_{TM}}{R_{TM}}.$	

4 Setup Parameters for the Template Measurement

Template	Create a new Object, using the object template Thermal Parameters AN 18 in dB-Lab. If this database is not available you may generate an object Thermal Parameters An 18 based on the general PWT module. You may also modify the setup parameters according to your needs.
Default Setting for 1 st Measurement	 Generate a measurement based on the general PWT measurement. Open the PP INFO and call it "1st : Find test voltage". Open the PP STIMULUS. Select internal mode starting at the starting voltage 1 V rms. Enable voltage stepping at size G_U 2 dB up to the maximal increase of G_{MAX} =24 dB. Open the PP GENERATOR and select noise according IEC60268. Disable high-pass and low-pass filtering. Open the PP CYCLES and set ON-Interval T_{ON}= 0.5 min. Open the PP METHOD and select Temperature mode and set Number of DUTs to 1. Keep fast temperature monitoring. Select Edit and keep the pilot tone frequency at 2 Hz. Open the PP FAILURE and set the minimal resistance R_{min} to 10 % and the maximal resistance R_{max} to 130% corresponding to an increase of the voice
Default Setting for 2 nd Measurement	 Generate a measurement based on the general PWT measurement. Open the PP INFO and call it "2nd : Parameter Measurement". Open the PP STIMULUS. Select internal mode starting at the starting voltage 1 V rms. Disable voltage stepping. Open the PP GENERATOR and select noise according IEC60268. Disable high-pass and low-pass filtering. Open the PP CYCLES and enable Intermittent excitation. Set the ON-Interval T_{ON}= 25 min and the OFF-Interval T_{OFF}= 5 min. Set the total measurement time T_{TOT}= 3 h and a regular sampling after T_{UPD}= 8s. Open the PP METHOD and select Temperature mode and set Number of DUTs to 1. Use slow temperature monitoring at the beginning of the measurement. Select Edit and keep the pilot tone frequency at 2 Hz. For the result Window "Temperature Window" disable the automatic start but enable the checkbox SYNC with PWT ON/OFF. Open the PP FAILURE and set the minimal resistance R_{min} to 10 % and the maximal resistance R_{max} to 150 % or other value.

5 More Information

Literature	Henricksen, Heat Transfer Mechanisms in Loudspeakers: Analysis, Measurement and Design, J. Audio Eng. Soc. Vol 35. No. 10, 1987 October
	D. Button, Heat Dissipation and Power Compression in Loudspeakers, J. Audio Eng. Soc., Vol. 40, No1/2 1992 January/February
	C. Zuccatti, Thermal Parameters and Power Ratings of Loudspeakers, J. Audio Eng. Soc., Vol. 38, No. 1,2, 1990 January/February
Software	User Manual for the KLIPPEL R&D SYSTEN.

Related Application Notes "Measurement of Nonlinear Thermal Parameters", Application Note 19

Find explanations for symbols at:

http://www.klippel.de/know-how/literature.html

Last updated: Oktober 05, 2023

