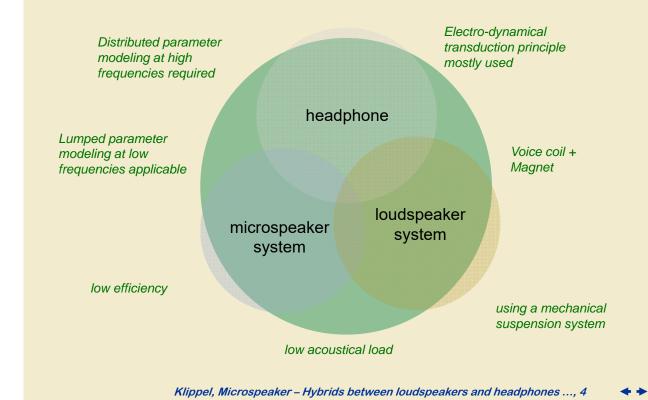
# MICROSPEAKERS – HYBRIDS BETWEEN HEADPHONES AND LOUDSPEAKERS

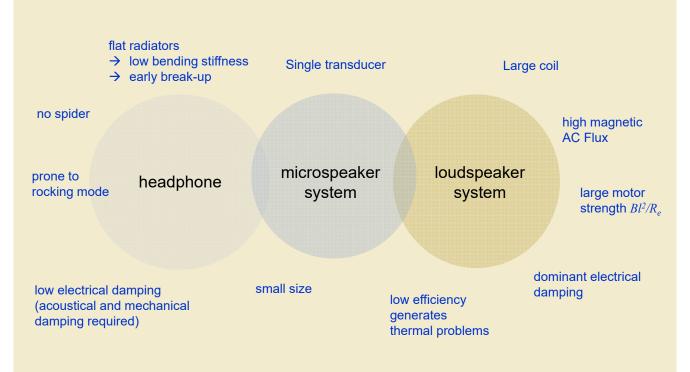
by Wolfgang Klippel

KLIPPEL GmbH
Dresden University of Technology

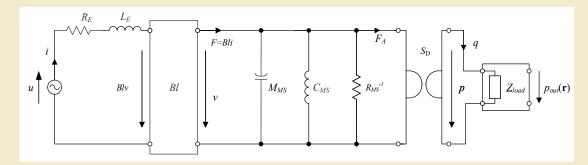

Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 1

## Content

- 1. Motivation
  - similarities and particularities
- 2. Basic Transducer Modeling
  - linear, time-invariant, lumped parameter
- 3. Progress in Transducer Modeling
  - higher-order system function,
  - modal vibration
  - radiation into 3D space
  - nonlinear, time variant
- 4. Consequences for Transducer Design


## **Similarities**

between headphones, microspeakers and loudspeakers



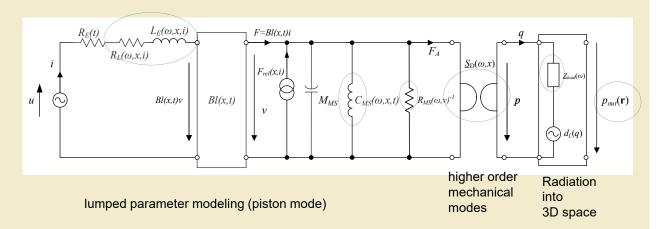



between headphones, microspeakers and loudspeakers



## **Basic Electroacoustical Modeling**




#### Assumptions:

- no heating of the voice coil ( $\rightarrow R_E$ = const.)
- eddy currents neglected (loss-less inductance  $\rightarrow L_{\scriptscriptstyle F}$ )
- nonlinearities neglected (e.g. Bl= const.)
- visco-elasticity neglected ( $\rightarrow C_{MS}$ = const.)
- simplified damping model (viscously damped system  $\rightarrow C_{MS}$ )
- higher-order modes neglected (piston mode described by  $S_D$ )

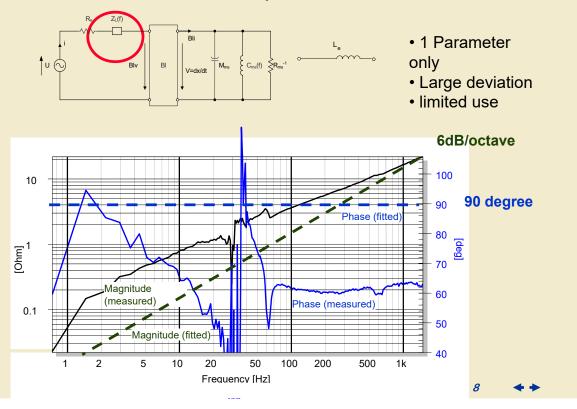
→ linear, time invariant, single input based on lumped parameter modeling

Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 6

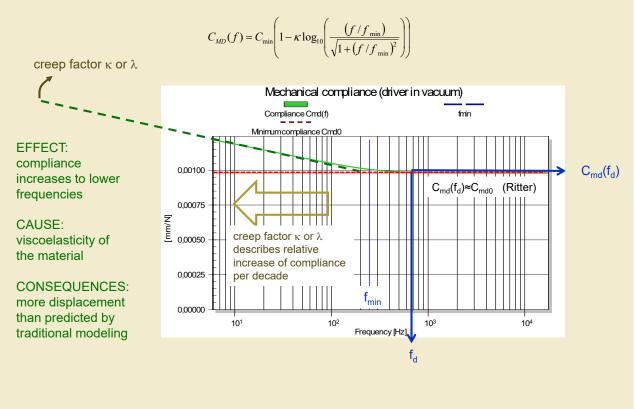
# Extended Electroacoustical Modeling



#### Higher-order linear transfer function

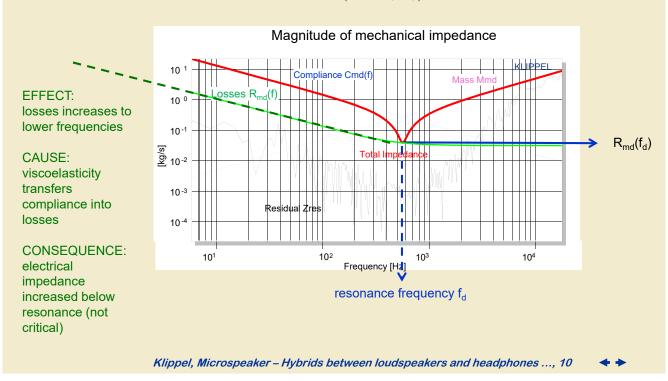

- Lossy inductance
- visco elastic creep modeling
- Modal vibration, radiation

**Nonlinearities** 


Time variant properties

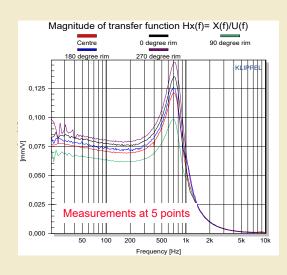
# Lossy Inductance $Z_L(j\omega)$

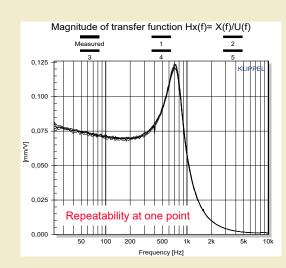
measured curves fitted by an ideal inductance




## Mechanical Compliance C<sub>md</sub>(f)




## Mechanical Resistance R<sub>md</sub>(f)


$$R_{MD}(f) = R_0 - \kappa C_{\min} \log_{10} \left( e \right) \left( \frac{\pi}{2} - \tan^{-1} \left( \frac{f}{f_{\min}} \right) \right)$$



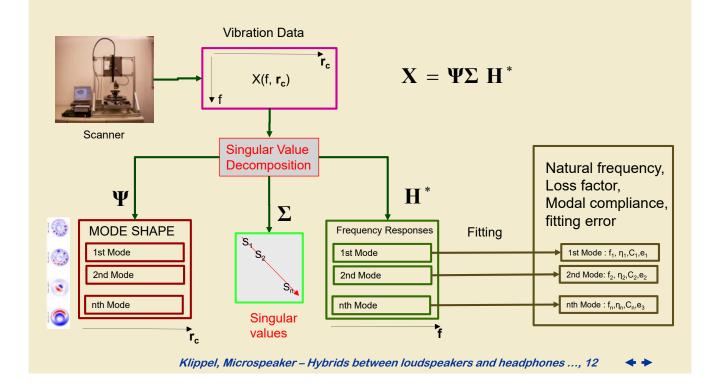
## Voice Coil Displacement

Laser measurement on Microspeakers and Headphones

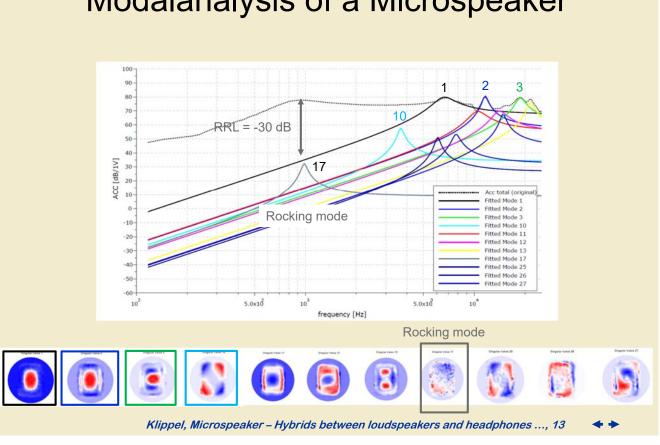




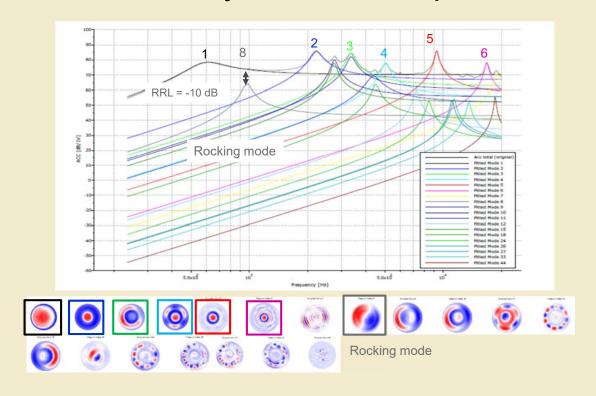



#### Conclusion:

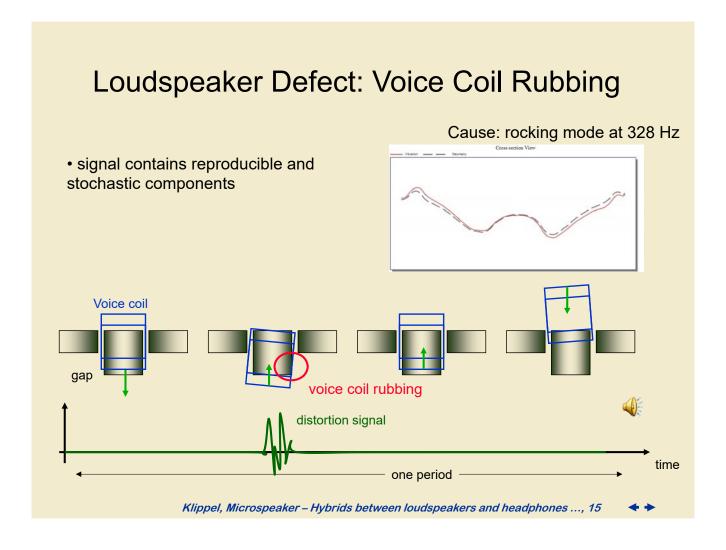
- No piston mode
- Spatial averaging is required


$$\underline{\underline{x}_{coil}(\omega)} = \frac{\int_{0}^{2\pi} \underline{x}(\omega, r_{avg}, \varphi) d\varphi}{2\pi}$$

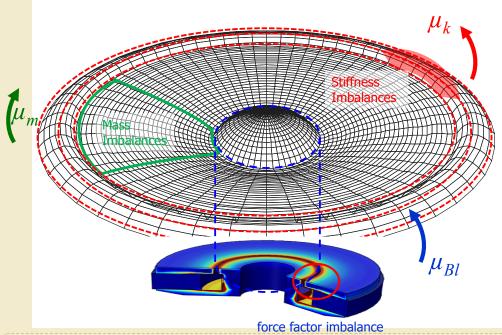
# **Experimental Modal Analysis**


not restricted to round radiators




## Modalanalysis of a Microspeaker

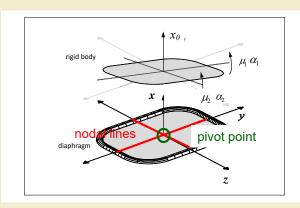



## Modalanalysis of a Headphone

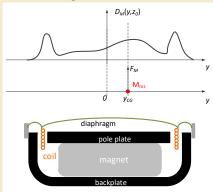


Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 14




## What Causes Rocking Modes?

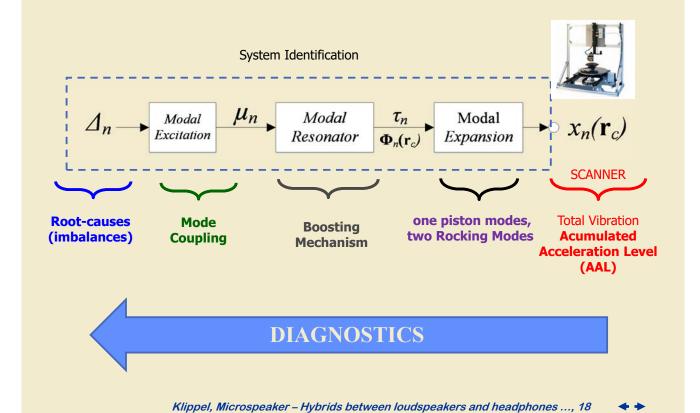



Which root cause excites the rocking ? → mass, stiffness, force factor Where is the root cause located ? → angle showing the direction How to assess the magnitude of the excitation ? → moments

Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 16

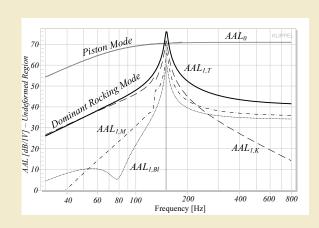
## Mass Imbalance

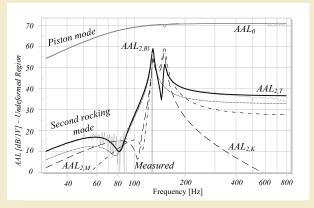



mass distribution function  $D_m(y,z)$  of the moving mass in x direction



If the center of gravity is not at the pivot point  $(y_{CG}\neq 0, z_{CG}\neq 0)$  the translational displacement  $x_0$  and the tilting angles  $\tau_I$  and  $\tau_2$  will generate the moments exciting the rocking modes


Imbalances  $\mu_1$  Moments  $\mu_2$  Tilting angles  $\alpha_1$   $\alpha_2$ 


# A New Measurement Technique



## Application in Transducer Diagnostics (1)

Example Headphone transducer



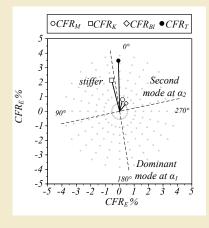


| Relative Rocking Level      | Dominant            | Second               |
|-----------------------------|---------------------|----------------------|
| RRL(dB)                     | (n=1)               | (n=2)                |
| Total contribution (T)      | $RRL_{1,T} = 5.4$   | $RRL_{2,T} = -12.9$  |
| Mass Imbalance (M)          | $RRL_{1,M} = -8.6$  | $RRL_{2,M} = -18.4$  |
| Stiffness Imbalance (K)     | $RRL_{1,K} = 1.4$   | $RRL_{2,K} = -17.7$  |
| Force factor Imbalance (BI) | $RRL_{1.Bl} = -9.6$ | $RRL_{2.Bl} = -12.6$ |

#### Conclusions:

- Good agreement between measurement and modelling
- First rocking mode has significant amplitude (more energy than piston mode)
- Stiffness imbalance provides the largest contribution (dominant cause)

## Application in Transducer Diagnostics (3)


Example Headphone transducer

Root Cause of the Rocking Mode (Imbalance)

| Center of         | Coordinates            | Value   |
|-------------------|------------------------|---------|
| Gravity (M)       | $d_{M}$                | 0.08 mm |
|                   | $\gamma_{\mathrm{M}}$  | 168°    |
| Stiffness (K)     | $d_K$                  | 0.73 mm |
|                   | $\gamma_{\rm K}$       | 17.54°  |
| Force factor (Bl) | d <sub>Bl</sub>        | 0.9 mm  |
|                   | $\gamma_{\mathrm{BI}}$ | 320°    |

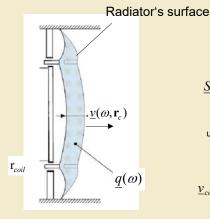
#### Excitation of the Rocking Resonator

| Imbalance         | Characteristics      | Value  |
|-------------------|----------------------|--------|
| Mass (M)          | CFR <sub>M</sub>     | 0.83 % |
|                   | $\beta_{M}$          | 345.9° |
| Stiffness (K)     | CFR <sub>K</sub>     | 2.22 % |
|                   | $\beta_{K}$          | 14.6°  |
| Force factor (BI) | CFR <sub>Bl</sub>    | 0.71 % |
|                   | $\beta_{Bl}$         | 320.8° |
| Total (M,K,Bl)    | CFR <sub>T</sub>     | 3.49%  |
|                   | $\beta_{\mathrm{T}}$ | 1.5°   |



#### Conclusions:

- A small stiffness imbalance (0.73 mm offset from pivot point) is the root cause
- High Quality factor (> 30) of the modal rocking resonator generates high amplitudes at resonance (150 Hz)


| Modal resonator (n=1,2)         | First mode (n=1)        | Second mode (n=2)        |
|---------------------------------|-------------------------|--------------------------|
| Resonance frequency             | f <sub>1</sub> = 151 Hz | f <sub>2</sub> = 129 Hz  |
| Relative gain at f <sub>n</sub> | RG <sub>1</sub> = 36 dB | $RG_2 = 31.6 \text{ dB}$ |
| Loss factor                     | $\eta_1 = 0.016$        | $\eta_2 = 0.014$         |
| Quality factor                  | $Q_1 = 30.2$            | $Q_2 = 34.7$             |

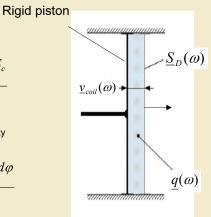
Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 20

**+** +

## Effective Radiation Area S<sub>D</sub>

#### Definition




replaced by

( ...( o. m.) 45

$$\underline{S}_{D}(\omega) = \frac{\int_{S_{c}} \underline{v}(\omega, \mathbf{r}_{c}) dS_{c}}{\underline{v}_{coil}(\omega)}$$

using mean voice coil velocity

$$\underline{v}_{coil}(\omega) = \frac{\int_{0}^{2\pi} \underline{v}(\omega, r_{coil}, \varphi) d\varphi}{2\pi}$$



 $S_D = \left| \underline{S}_D(\omega_0) \right|$ 

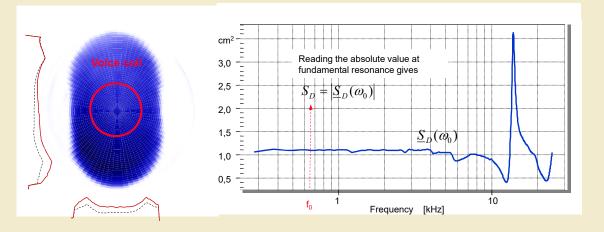
Reading the absolute value at fundamental resonance

The effective radiation area  $S_D$  is an important lumped parameter describing the surface of a rigid piston moving with the mean value of the voice coil velocity  $v_{coil}$  and generating the same volume velocity q as the radiator's surface. The integration of the scanned velocity can cope with rocking modes and other asymmetrical vibration profiles.

## Laser Scanner Technique





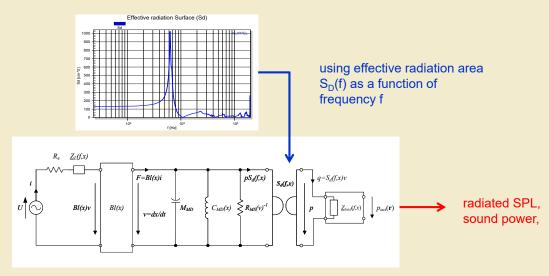

$$\underline{S}_{D}(\omega) = \frac{\sum \underline{x}(\omega, r_{c,i}) \cdot \Delta S_{c,i}}{\underline{x}_{coil}(\omega)}$$

#### Method:

- 1. Measurement of vibration and radiatior's geometry
- 2. Integration over surface and voice coil position
- 3. Calculation of effective radiation area  $S_D(\omega)$
- 4. Reading  $S_D(ω_s)$  at fundamental frequency  $ω_s$

#### Problems:

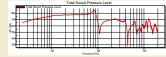
• Surface is covered by grill (surface is not visible for laser)




Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 22

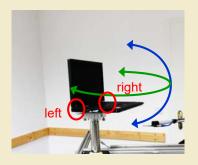


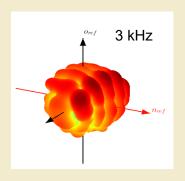
## Predicting the Acoustical Output

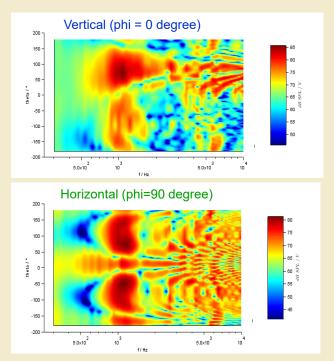

at higher frequencies using lumped parameters



useful for transducers having


- high complexity of the mechanical vibration
- low complexity in radiation directivity (ka < 1)</li>


e.g. (in-ear) headphones, microspeaker application

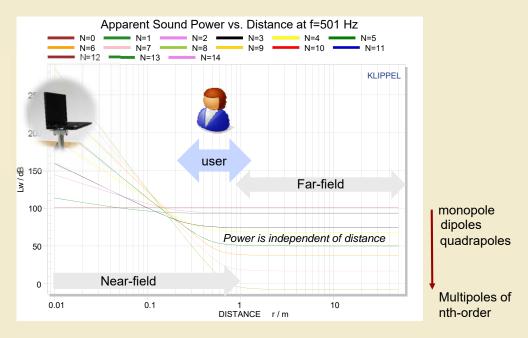



## Example Microspeaker in Laptop

Far field information







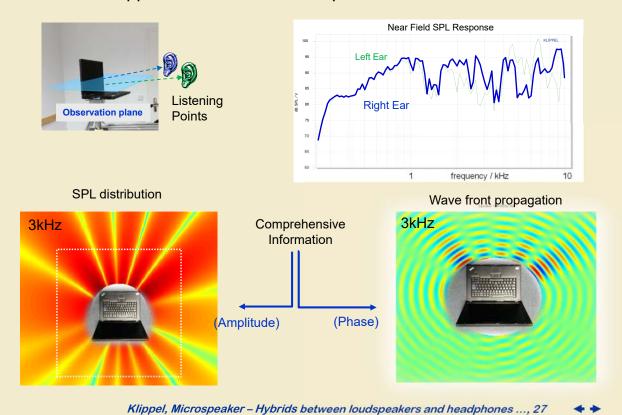

The left and right speaker generate a complex directivity pattern!

Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 25

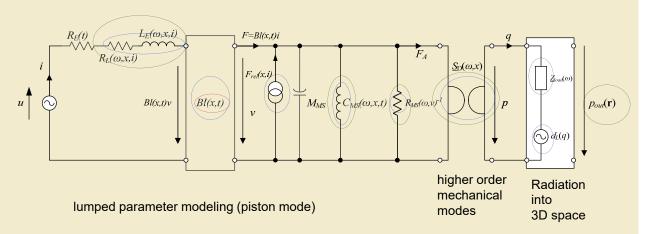
4 +

### Is the User Located in the Near-Field or Far-Field?




Determining the location of the near and far-fields is important for personal and handheld audio devices !!

Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 26




## Comprehensive 3D Information

supports the evaluation of spacial sound effects



## **Transducer Nonlinearities**

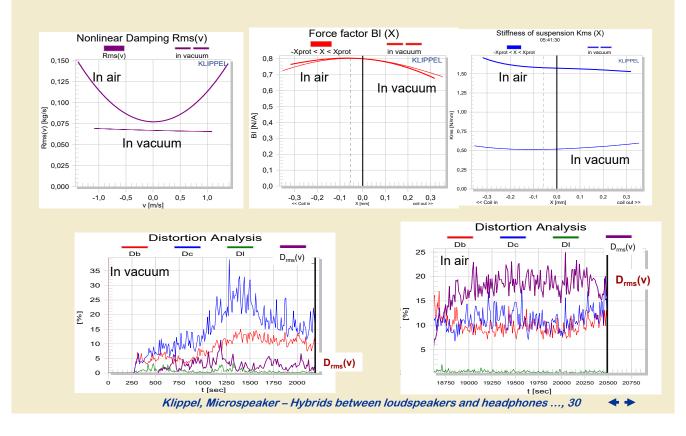


#### Higher-order linear transfer function

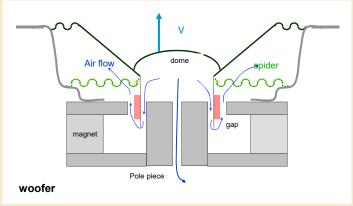
- · Lossy inductance
- · visco elastic creep modeling
- Modal vibration, radiation

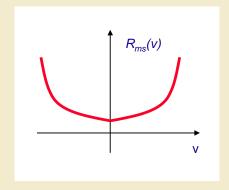
#### **Nonlinearities**

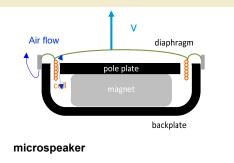
- nonlinear AC flux, reluctance force, inductance
- electro-dynamical motor
- · stiffness and damping of suspension
- acoustical system


Time variant properties

#### **Dynamic Measurement** of motor and suspension nonlinearities **Stimulus** Noise, Audio signals (music, noise) Power Multi-tone Speaker Voltage & current amplifier complex **Nonlinear** State Variables · peak displacement during measurement · voice coil temperature eletrical input power, **Nonlinear Parameters Linear Parameters** Thermal Parameters T/S parameters at x=0 · Thermal resistances Rtv, Rtm nonlinearities Bl(x), Kms(x), Cms(x), · Box parameters fb,Qb • Thermal capacity Ctv, Ctm Rms(v), L(x), L(i) • Impedance at x=0 · Air convection cooling Voice coil offset Suspension asymmetry Maximal peak displacement (Xmax) Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 29





## Example: Microspeaker

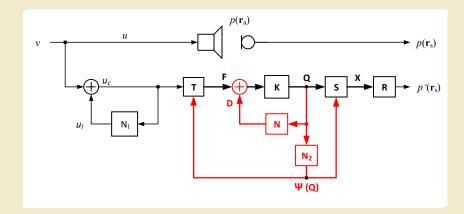

Nonlinear Parameters measured in air and in vacuum

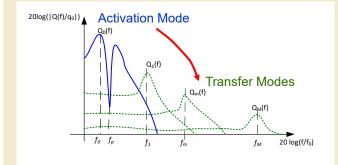


## Nonlinear Mechanical Resistance R<sub>ms</sub>(v)







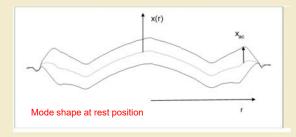


R<sub>ms</sub>(v) depends on velocity v of the coil due to air flow and turbulences at vents and porous material (spider, diaphragm)

Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 31

4+

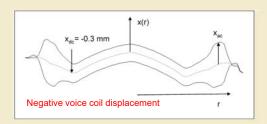
### Nonlinear Interactions between Vibration Modes



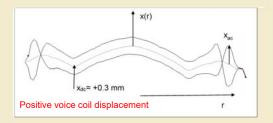



High amplitudes  $\mathbf{Q}$  of the activation mode (e.g. fundamental mode  $\mathbf{Q}_0$ ) changes

- Natural frequencies of the transfer modes (higher-order break up modes)
- Mode shape  $\Psi$  (Q) of the transfer mode
- Excitation T of the transfer modes
- · Sound radiation by the transfer modes


# Nonlinear Variation of the Mode Shape Interaction with the fundamental mode

Performing an incremental measurement of the effective radiation area at the original rest position and with a positive and negative offset of 0.3 mm.

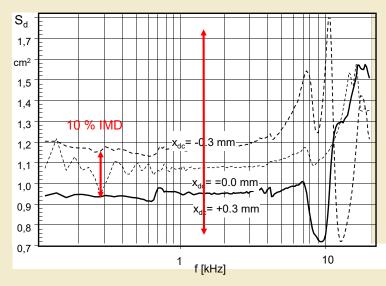





$$\underline{q}(\omega) = \underline{S}_D(\omega, x_{DC})\underline{v}(\omega)$$
$$= \sum_{i=0}^N \underline{s}_i(\omega)\underline{v}(\omega)(x_{DC})^i$$



The displacement generated by the bass tone generates the geometry of the surround → Other mode shape at higher frequencies




Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 33

#### **+** +

# Effective Radiation Surface S<sub>d</sub>(f,x) versus frequency f and voice coil displacement x

20-50 % IMD

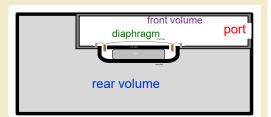


Volume velocity for a DC displacement x<sub>sc</sub>

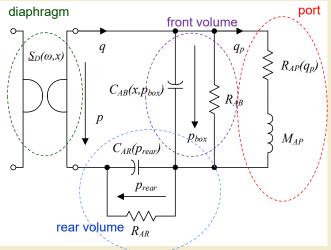
$$\underline{q}(\omega) = \underline{S}_{D}(\omega, x_{DC})\underline{v}(\omega)$$

$$= \sum_{i=0}^{N} \underline{S}_{i}(\omega)\underline{v}(\omega)(x_{DC})^{i}$$




$$q(t) = \sum_{i=0}^{N} \left( \mathsf{F}^{-1} \left\{ \underline{s}_{i}(\omega) \right\} * \nu(t) \right) (x(t))^{i}$$

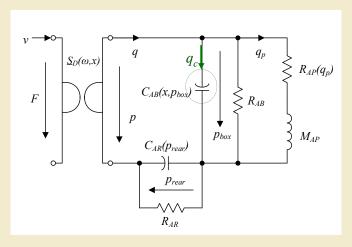
$$F_A(t) = \sum_{i=0}^{N} \left( \mathsf{F}^{-1} \left\{ \underline{s}_i(\omega) \right\} * q(t) \right) (x(t))^i$$


The displacement varying Sd(x) generates high values of intermodulation distortion

## Modeling of the Acoustic System

Example: Microspeaker mounted in an enclosure with sidefire exit




The voice coil displacement of microspeaker operated in a side fire system is not small compared to the geometrical dimensions of the front volume and rear volume



Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 35

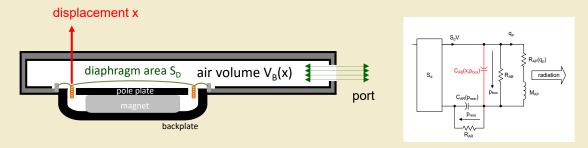
# **Dynamic Nonlinear Elements**

volume velocity 
$$\underline{q}(\omega) = \underline{S}_D(\omega, x)\underline{v}(\omega)$$
$$= \sum_{i=1}^{N} \underline{s}_i(\omega)\underline{v}(\omega)(x)^i$$



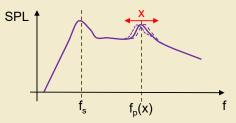
sound pressure 
$$p(t) = \mathsf{F}^{-1} \underbrace{\{\underline{Z}_{load}(\omega)\}}_{\substack{\text{load}\\ \text{impedance}}} q(t) + d_L(t)$$

sound pressure at receiving point  ${\bf r}$  in the far field


$$p_{out}(\mathbf{r},t) = \mathsf{F}^{-1} \{ \underline{H}(\mathbf{r},\omega) \}^* \, q(t) + d_a(\mathbf{r},t)$$
 linear nonlinear transfer function distortion

Transfer function describing sound radiation and propagation to the point  ${\bf r}$  in the far field using Rayleigh equation

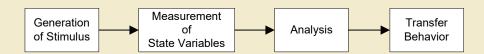
$$\underline{H}(\mathbf{r},\omega) = \frac{j\omega\rho_0}{4\pi S_D(\omega)\underline{v}(\omega)} \int_{S_c} \underline{v}(\omega,\mathbf{r}_c) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_c|}}{|\mathbf{r}-\mathbf{r}_c|} dS_c$$


Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 36

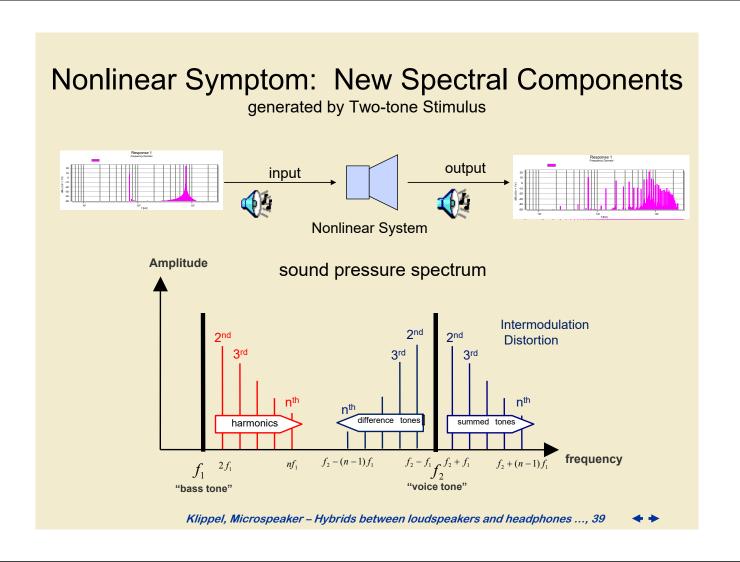
## Air Compliance in Small Vented Enclosures



Compliance  $C_{AB}(x,p)$  of enclosed air


$$\begin{split} C_{AB}(p,x) = & \frac{V_0 - S_D x}{\kappa p_0} \Bigg[ 1 - \frac{\kappa + 1}{2\kappa} \Bigg( \frac{p}{p_0} \Bigg) + \frac{\kappa + 1}{6\kappa} \Bigg( 2 + \frac{1}{\kappa} \Bigg) \Bigg( \frac{p}{p_0} \Bigg)^2 \Bigg] \\ & \text{with} \\ & \text{static air pressure } p_0 \\ & \text{static air volume } V_0 \text{ at coi's rest position} \\ & \text{adiabatic coefficient } \kappa \end{split}$$

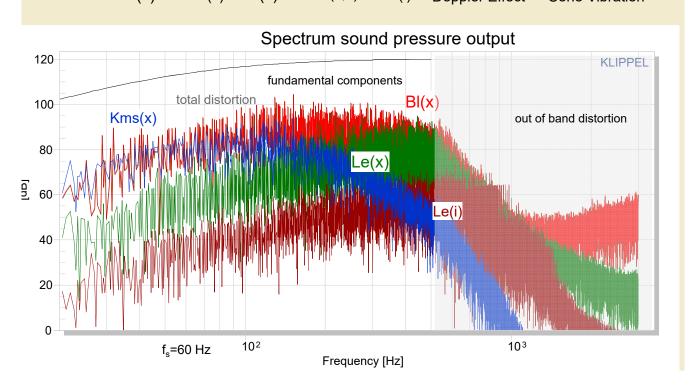



- → voice coil displacement x varies air volume  $V_B(x) = V_0 S_D x$
- → air is not compressed but exchanged with ambience
- $\rightarrow$  Helmholtz resonance  $f_D(x)$  varies with displacement x
- → displacement generates intermodulation distortion at port resonance
- → critical in small personal audio devices with complex outlet geometry

Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 37

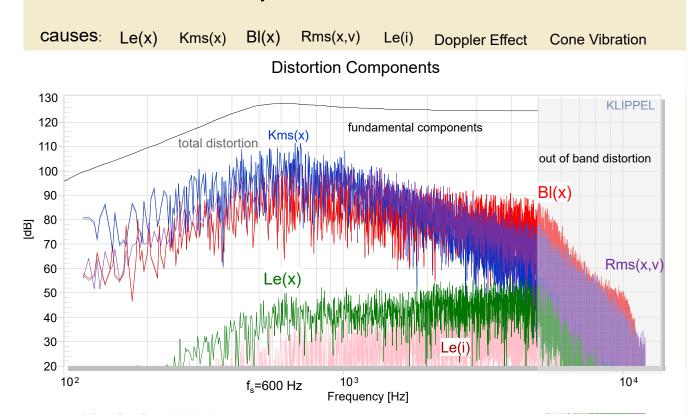
## Measurement of Symptoms



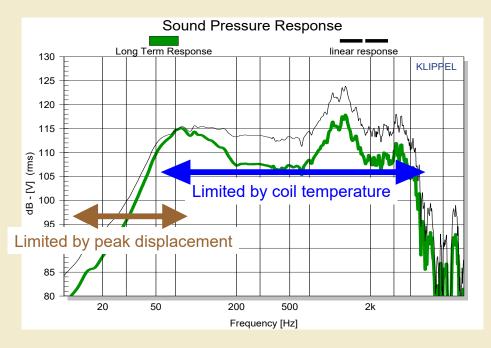

- requires stimulus
- requires special sensor (micro, laser, anemometer)
- applied to selected state variables (pressure, current)
- requires prototype





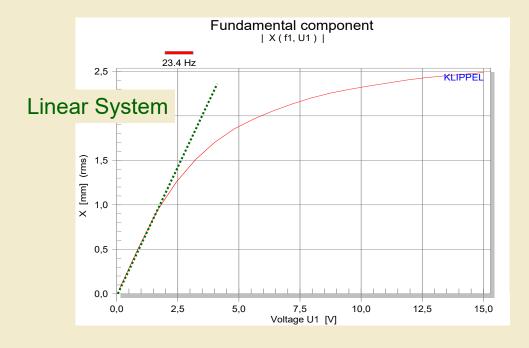

Analysis of Multi-tone Distortion

causes: Le(x) Kms(x) BI(x) Rms(x,v) Le(i) Doppler Effect Cone Vibration




## Exercise: Microspeaker

Analysis of Multi-tone Distortion



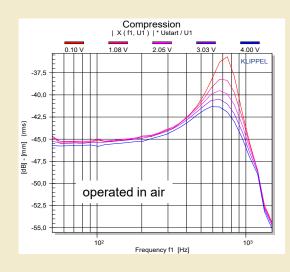

# Compression of SPL Fundamental for a sinusoidal tone versus frequency

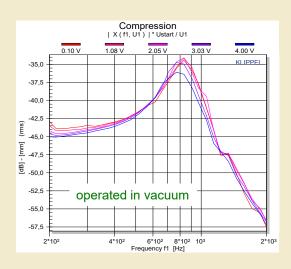


Long term response was measured by using a stepped sine wave and cycling 1 min on/1 min off

## Nonlinear Symptom: Amplitude Compression




Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 43






## Unique Symptom of R<sub>ms</sub>(v)

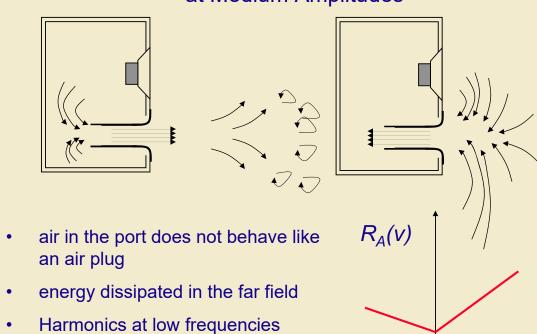
Compression of the Fundamental Component in a microspeaker





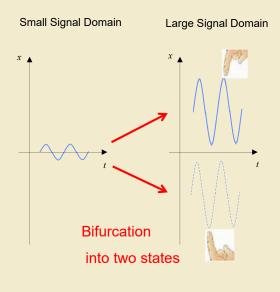
Note: The nonlinear damping caused by BI(x) generates the same expansion (more displacement at resonance) in vacuum and in air !!!

### **DC-Air Flow**


generated by a smart phone with side-fire port






# Flow Resistance R<sub>A</sub>(v) of a Port at Medium Amplitudes

Klippel, Microspeaker - Hybrids between loudspeakers and headphones ..., 45



 $R_A(v) \sim |v|^* m$ 

## Nonlinear Symptom: Instability






Stimulus: Single tone (f = 1.5fs) at high amplitude

Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 47

#### **+** +

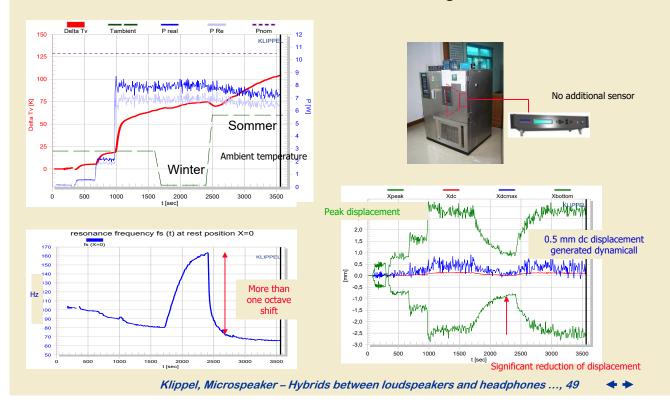
## **Time Variant Properties**



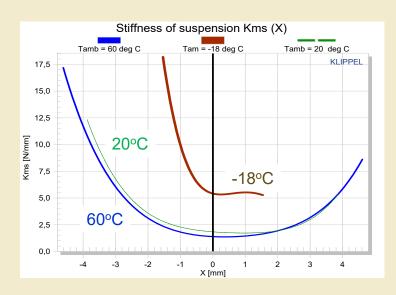
#### Higher-order linear transfer function

- · Lossy inductance
- · visco elastic creep modeling
- · Modal vibration, radiation

#### **Nonlinearities**

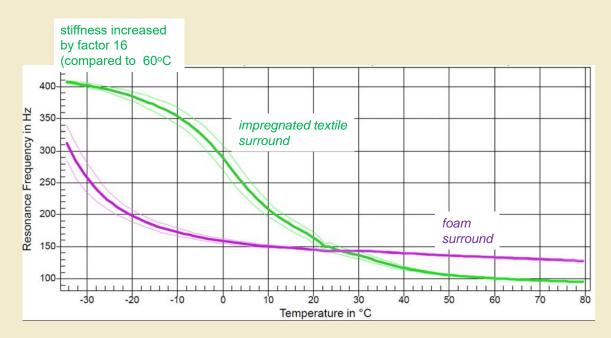

- nonlinear AC flux, reluctance force, inductance
- electro-dynamical motor
- stiffness and damping of suspension
- acoustical system

#### Time variant properties


 heating, climate impact, load, fatigue, aging, gravity

## Influence of Ambient Conditions

**Environmental Testing** 



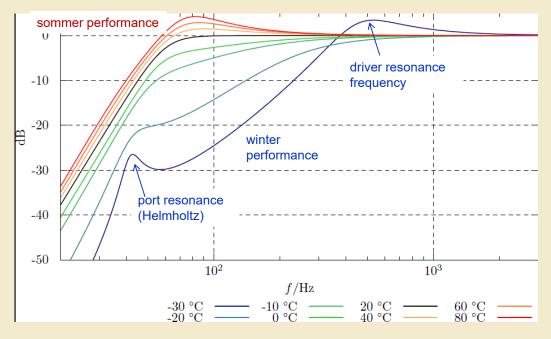

## Influence of the Climate on Stiffness Kms(x)



At low ambient temperature (-18 degree C) the rubber surround becomes 4 times stiffer and limits negative peak displacement at -1.5 mm

# Resonance Frequency versus Ambient Temperature two transducers with different surround material




Experiments performed at controlled conditions (30 % relative humidty) Details: Diploma Thesis Ch. Kochendörfer TU Dresden, 2011

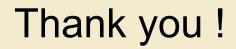
Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 51

#### **+ +**

## Consequences of Climate Impact

SPL response of a vented loudspeaker system




→ Passive system alignment (box tuning) assumes constant properties of the transducer !!

#### Overview of transducer characteristics

| Characteristic                             | Interpretation                                                                  | Importance for<br>Micro-speaker | Importance for<br>Headphone | Importance fo<br>Loudspeaker |
|--------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|-----------------------------|------------------------------|
| R <sub>e</sub> (t)                         | Time variance of the voice coil DC resistance due to thermal dynamics           | high                            | medium                      | high                         |
| <sub>e</sub> (ω), R <sub>L</sub> (ω)       | Voice coil inductance and AC resistance depending on frequency                  | negligible                      | negligible                  | high                         |
| <sub>e</sub> (x), R <sub>L</sub> (x)       | Voice coil inductance and AC resistance depending on displacement               | low                             | negligible                  | high                         |
| <sub>e</sub> (i), R <sub>L</sub> (i)       | Voice coil inductance and AC resistance depending on<br>current                 | negligible                      | negligible                  | medium                       |
| rel(x,i)                                   | Reluctance force depending on voice coil current and displacement x             | negligible                      | negligible                  | small                        |
| l(x)                                       | Nonlinear force factor depending on displacement x                              | high                            | high                        | high                         |
| l(t)                                       | Time variance of the force factor due an offset in the voice coil rest position | high                            | high                        | medium                       |
| C <sub>MS</sub> (x)                        | Nonlinear compliance depending on displacement x                                | high                            | high                        | high                         |
| C <sub>MS</sub> (t)                        | Time variance of the compliance due aging, climate                              | high                            | high                        | high                         |
| C <sub>MS</sub> (ω)<br>C <sub>MS</sub> (ω) | Visco-elastic behavior (creep) of the suspension                                | high                            | medium                      | low                          |
| R <sub>MS</sub> (v)                        | Nonlinear mechanical resistance depending on velocity v                         | high                            | low                         | negligible                   |
| (r <sub>c</sub> )-v                        | Deviation between distributed voice coil velocity and mean value v              | high                            | high                        | negligible                   |
| RL                                         | Relative rocking level                                                          | high                            | high                        | small                        |
| <sub>D</sub> (ω)                           | Frequency dependency of radiation area                                          | low                             | high                        | medium                       |
| <sub>D</sub> (x)                           | Nonlinear effective radiation area depending on displacement x                  | high                            | high                        | medium                       |
| <sub>A</sub> (p)                           | Nonlinearity of the acoustic Load                                               | high                            | small                       | small                        |
| <sub>A</sub> (ω)                           | Complexity of the frequency dependency of the acoustic load                     | low                             | high                        | low                          |
| <u>l</u> <sub>A</sub> (r, ω)               | Complexity of the directional radiation characteristic                          | low                             | low                         | high                         |
| լ(q)                                       | Nonlinear load distortion generated by the acoustical system                    | high                            | negligible                  | medium                       |
| <sub>A</sub> (r,t)                         | Nonlinear output distortion generated by the acoustical system                  | medium                          | low                         | low                          |

## Conclusions

- Microspeakers → major source of innovation
- Innovative transducer design requires more accurate modeling
- Identification of free model parameters → new measurement techniques
- Diagnostics based on parameters becomes more important
- Testing with audio like stimuli required for assessing thermal, nonlinear and time varying properties
- Suspension and radiator is the weakest component!



Klippel, Microspeaker – Hybrids between loudspeakers and headphones ..., 55