Acoustical Measurement of Sound System Equipment according IEC 60268-21

KLIPPEL LIVE
a series of webinars presented by
Wolfgang Klippel
1. Modern audio equipment needs output based testing
2. Standard acoustical tests performed in normal rooms
3. Drawing meaningful conclusions from 3D output measurement
4. Simulated standard condition at a single evaluation point
5. Maximum SPL – giving this value meaning
6. Selecting measurements with high diagnostic value
7. Amplitude Compression – less output at higher amplitudes
8. Harmonic Distortion Measurements – best practice
9. Intermodulation Distortion – music is more than a single tone
10. Impulsive distortion - rub&buzz, abnormal behavior, defects
12. Benchmarking of audio products under standard conditions
13. Auralization of signal distortion – perceptual evaluation

14. Setting meaningful tolerances for signal distortion
15. Rating the maximum SPL value for product
14th KLIPPEL LIVE:
Setting meaningful tolerances for signal distortion

Topics today:

• Modeling the processing in our ears
• Audibility threshold under critical condition
• Perceptual audio quality measured with music
• Our brain decides about the audio quality
• Maximizing the end-user value
How to create a successful Audio Product?

We need target values, limits and tolerances for our measurement data!
Essential Metrics for Benchmarking defined in IEC Standards

- **Linear Distortion**
 - SPL response \(L(f) \)

- **Time-Varying Distortion**
 - Amplitude compression \(C(f) \)

- **Irregular Distortion**
 - Impulsive distortion ratio \(IDR(f) \)

- **Nonlinear Distortion**
 - Multi-tone distortion \(MTD(f) \)

Discussed in KLIPPEL LIVE #12
Applying Limits to the Metrics

- **LINEAR DISTORTION**
 - SPL response $L(f)$

- **TIME-VARYING DISTORTION**
 - Amplitude compression $C(f)$

- **IRREGULAR DISTORTION**
 - Impulsive distortion ratio $IDR(f)$

- **NONLINEAR DISTORTION**
 - Multi-tone distortion $MTD(f)$

Limit Values:
- L_D outside of the product specification (Fail in EoL-testing)
- L_{IDR} according specification (PASS in EoL)
- L_L time-varying distortion amplitude compression $C(f)$
- L_{MTD}
Poll:

How would you set the limits for signal distortion?

A. At the limits, the distortion becomes just audible for a trained and experienced listener (GOLDEN EAR) under special critical conditions 6%

B. At the limits the distortion can be detected by a normal user under typical conditions 24%

C. The limits correspond to a small loss of perceptual audio quality as perceived by a normal user under typical conditions 24%

D. The limits describe distortion which are unacceptable for some listeners 6%

E. The limits describe the signal distortion that generates the best benefit-cost ratio for end user 41%

F. Other 0%
Criteria for the Limits

I. **Audibility** threshold of signal distortion (sensitive ear, critical test condition)

II. Not acceptable degradation of audio quality as perceived by a normal end user under typical application condition

III. A significant decrease of the **value** of the audio product as seen by the end-user
Worst Case Scenario
Audibility under most critical condition

End-user: Experienced listener (e.g. sound engineer, musician, audiophile)

Most critical program material: two-tone signal with optimal amplitude, frequency setting and sufficient duration

Acoustical Environment: Anechoic room (dominant direct sound, no ambient noise)

Test Methodology: Double Blind AB-Test to find a just detectable difference

Limit: Identical with audibility threshold

Practical Relevance: High-quality products (e.g. Studio Monitor)
Audibility of Signal Distortion

Methods for Assessments:

1. Modeling the perceptive and cognitive processing in ear and brain based on basic research
2. Listening to real products (selected participants, program material, listening room, double blind AB test, statistical analysis)
3. Systematic listening to a modified sound output (Auralization of signal distortion → KLIPPEL LIVE #13)
Evaluation of Signal Distortion
based on Perceptual Modeling

The basic auditory sensations are the dimensions of the perceptual space and describe the audibility of the distortion.

The cognitive processing summarizes the perceived information to a final quality judgement.

Basic monaural processing

Binaural Processing

Basic Auditory Sensations
- Loudness
- Fluctuations
- Roughness
- Sharpness S
- Coloration V
- Spaciousness R
- Localization

The reference signal and test signal are used in the basic monaural processing and binaural processing to evaluate the distortion.
Basic Monaural Processing

Nonlinear System

Sound pressure
In ear channel

Filter bank

Rectifier
Low-pass

Spectral
spread

Nonlinear
decay

Specific
Loudness
N'

Weighted
integration

20-90 Hz

90-180 Hz

180 - 280 Hz

280 - 355 Hz

355 – 450 Hz

450 – 560 Hz

9 -11.2 kHz

11.2 -14 kHz

loudness

Sharpness

roughness

fluctuation

Basic auditory sensations

KLIPPEL LIVE #14: Setting meaningful tolerances
Consequences for the assessment of audio systems:

- **third-octave spectral analysis** of reproduced audio signal is useful for interpretation of **coloration** in audio-chain (stimulus-speaker-room-ear)
- Bass sensations can be enhanced by increasing level of higher frequency components within the critical band
- 1 dB variation of the critical band level becomes audible
Transformation
Critical Band Level $L_G \rightarrow$ Excitation Level L_E

Consequences for assessment of audio systems:
- Peaks are more critical than dips in amplitude response
- Nonlinear distortion is masked by the fundamental component
- Fast modulation of the envelope is less audible
Transformation:

Excitation Level $L_E \rightarrow$ Specific Loudness N'

Consequences for assessment of audio systems:

- Bass signals are not audible if the listening level is too low.
- Small differences in transfer response may cause significant differences in perceived bass sensation.

1. Specific Loudness $N'=0$ for $L_E < L_{TQ}$
2. Loudness doubles if excitation level rises by 10 dB for $L_E >> L_{TQ}$.

Loudness for pure tones

- $L= 100$ phon
- $N=64$ sone

Level of test tone

Level of test tone in quiet L_{TQ}

Factors:

- Factor 2

Frequency

- 0.02 kHz
- 0.1 kHz
- 1 kHz
- 20 kHz
Poll:

Which limit would you apply to Total Harmonic Distortion (THD) under most critical conditions?

<table>
<thead>
<tr>
<th>Option</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. More than 10 %</td>
<td>5%</td>
</tr>
<tr>
<td>B. 10%</td>
<td>43%</td>
</tr>
<tr>
<td>C. 1 %</td>
<td>29%</td>
</tr>
<tr>
<td>D. 0.1 %</td>
<td>10%</td>
</tr>
<tr>
<td>E. 0.01 %</td>
<td>0%</td>
</tr>
<tr>
<td>F. Less than 0.01 %</td>
<td>0%</td>
</tr>
<tr>
<td>G. I don’t know</td>
<td>14%</td>
</tr>
</tbody>
</table>
Audibility Thresholds under Critical Conditions

<table>
<thead>
<tr>
<th>Distortion</th>
<th>Metrics</th>
<th>Audibility Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Distortion</td>
<td>Variation of SPL frequency response $\Delta L(f)$</td>
<td>0.5 ... 1 dB</td>
</tr>
<tr>
<td>Time-variant linear distortion</td>
<td>Amplitude Compression C</td>
<td>0.2 ... 1 dB</td>
</tr>
<tr>
<td>Regular Nonlinear Distortion</td>
<td>$D_{THD}(f)$, $D_{2HD}(f)$, $D_{3HD}(f)$, $D_{2IMD}(f)$, $D_{3IMD}(f)$</td>
<td>0.3 ... 3 %</td>
</tr>
<tr>
<td>Irregular Distortion (defects)</td>
<td>Impulsive distortion ratio IDR(f)</td>
<td>-60 ... -40 dB</td>
</tr>
</tbody>
</table>
Audibility of Linear Distortion
most critical condition

Just-noticeable Changes in Amplitude

Threshold for sinusoidal stimulus depends
• Frequency and level of the tone
• Duration of the tone (at least 0.5s)
• Pause between the tones (at least 0.2 s)
• Other factors

Impact on Audio Measurements:
• Variation of SPL response $L(f)$ versus frequency
• Amplitude Compression $C(t)$ versus time

Critical scenario in practice:
• Glissando (continuous slide) in music with a sparse spectrum
• Just noticeable shift in localization of the sound event (lateralization)
Audibility of Regular Nonlinear Distortion

Just noticeable 2nd-order harmonic distortion

P_{abs} (db)

$f_{m}[\text{kHz}]$

P_{abs} (db)

$f_{m}[\text{kHz}]$

Just noticeable 3rd-order harmonic distortion

P_{abs} (db)

$f_{m}[\text{kHz}]$

KLIPPEL LIVE #14: Setting meaningful tolerances, 19
Spectral Masking of the Harmonic Distortion

Level of test tone masked by a tone at 1kHz of different levels

Consequences for audio reproduction:

Low SPL: Distortion are masked by hearing threshold in quiet
High SPL: Distortion are masked by the fundamental and ear nonlinearity

Intermodulation Distortion

generated by Two-tone Stimulus

Are the intermodulation distortion components masked by the fundamental? It depends on the frequency of the bass tone f_1!

From KLIPPEL LIVE #9
Audibility of Intermodulation Distortion

Just-noticeable degree of amplitude modulation (AM) and just noticeable index of frequency modulation (FM) of a high-frequency tone \(f_2 = 1 \text{ kHz} \) tone at 80 dB SPL, as a function of modulation frequency \(f_1 \).

Conclusion:

\[\rightarrow \text{the intermodulation distortion is not masked (} f_1 > 200\text{Hz)} \]

\[\rightarrow \text{AM modulation (e.g. force factor distortion) is audible at 3% and perceived as roughness and fluctuation (} f_1 < 100\text{Hz)} \]

\[\rightarrow \text{Threshold of FM modulation is 20 dB higher (} f_1 < 30\text{Hz)} \]

\[\rightarrow \text{Doppler distortion is not critical} \]

Zwicker, Fastl, 1999
Masking Threshold

generated by a band-limed Multi-Tone Stimulus

The fundamental components generate a high masking pattern. The distortion at higher frequencies can be detected at 1 % threshold!
Audibility of Intermodulation
Multi-Tone complex via static nonlinearity

Threshold of audibility of a distorted multi-tone complex comprising fundamental f_0 and harmonics up to the 10th order.

Gässler, 1955
Nonlinear Distortion in a Dense Spectrum

- Nonlinear Distortion are masked in the loudness and SPL spectrum!

BUT
- Nonlinear Distortion can be detected in the time domain (as roughness and fluctuation)
Demo: Audibility of Amplitude Modulation

Tools: Using dedicated software modules of the KLIPPEL Analyzer

- **Live Audio Analyzer (LAA)**
- **Multi-tone Measurement (MTON)**
Masking of Loudspeaker Defects

- Fundamental component masks low-order harmonics
- Hearing threshold also masks irregular distortion at high frequency

Questions: Which perceptual metrics reveal the loudspeaker defects?
Spectrogram $L_{REF}(f_s, f_E)$
generated by an Auditory Filterbank

Discussed in KLIPPEL Live #10

Instantaneous excitation frequency of the chirp f_e

Spectral frequency f_s
3D Disturbance to Mask Ratio

Disturbance Mask Ratio shows the difference between the spectrum \(L_{DUT}(f_s, f_E) \) of the DUT and the masking threshold generated by the Golden Reference DUT.

Spectrum \(L_{REF}(f_s, f_E) \) of the Golden Reference DUT

Disturbance Mask Ratio \(DMR(f, t) \) of the Golden Reference DUT

\[DMR \approx 0 \]

Masked by fundamental (+ accepted distortion)
Low Masking of Impulsive Distortion!

Disturbance Mask Ratio $\text{DMR}(f,t)$ of the Golden Reference DUT

3D Spectrum of a Defective Speaker (loose particles simulated by one grain of salt)

Impulsive Distortion

Low-order harmonic distortion (dominating THD) is masked by fundamental and accepted distortion

Impulsive Distortion generates high frequency components which are not masked by fundamental!
Basic Auditory Sensations

- **Temporal envelope variation** (e.g. amplitude modulation, transients)
 - **Increased Roughness**
 - Sensation: aggressive, unnatural, more noticeable

- **High-frequency distortion** (Increasing spectral power above 3 kHz)
 - **Increased Sharpness**

Degradation of Sound Quality
Consequences for EoL-Testing

Is audibility a reliable criteria for setting PASS/FAIL limits?

- No, some defective units produce symptoms just below the audibility threshold at EoL but the failure becomes worse over time and cause a field reject later!
- Thus, we have used trained and experienced operators for listening in traditional EoL testing.
- Today, we use modern test instruments that exploit available physical information and provide more sensitivity and reliability than the human ear for irregular defects (rub and buzz).
Questions, comments?
Criteria for the Limits?

I. **Audibility** threshold of signal distortion (sensitive ear, critical test condition)

II. Not acceptable degradation of **audio quality** as perceived by a normal end user under typical application condition

III. A significant decrease of the **value** of the audio product as seen by the end-user
Audio Quality
as seen by the typical End-User

Questions:
• What is the typical end-user?
• What is the typical program material (music)?
• What is the typical acoustical environment?
• How can we simplify the assessment of the audio quality?
Audio Quality
as seen by the typical End-User

Methods for Assessments:

1. Modeling the perceptive and cognitive processing in ear and brain based on basic research
2. Listening to real products (selected participants, program material, listening room, double blind AB test, statistical analysis)
3. Systematic listening to a changed sound output (Auralization of signal distortion → KLIPPEL LIVE #13)
Assessing the Sensitivity of Signal Distortion

Virtual enhancement or attenuation of the distortion components (see KLIPPEL Live #13)
Measurement Audibility Threshold
Distortion generated by regular nonlinearity (force factor $B_l(x)$)

Correct judgements
100%
75%
50%

Just audible
Clearly audible
Depends on listener, music, position, room

Psychometric function of audibility
By accidental guessing

Undistorted
Double blind AB test
Real product

Scaling of Signal Distortion S_{DIS}

KLIPPEL LIVE #14: Setting meaningful tolerances, 47
Audibility and Audio Quality

Distortion generated Regular Distortion (nonlinear force factor $B_l(x)$)

Rated sound quality

10 = "high"

5 = "medium"

0 = "low"

Correct responses

100%

75%

50%

Rated sound quality

target performance

Audibility and Audio Quality

Just audible

Audible

Unacceptable

Psychometric function of audibility

By accidental guessing

Scaling of Signal Distortion S_{DIS}
Evaluation of Signal Distortion
based on Perceptual & Cognitive Modeling

Perceived defects consider the ideal imagination and the impact on audio quality
Learning Linear Distortion

1 Live Test
• In each room 20 subjects evaluated 3 loudspeakers using 3 programs
• After completing tests moving into the next room
Results:
• Significant differences between loudspeakers
• No significant influence of the room

2 Binaural Reproduction Test
• Repeating test in same order as Live Test
Results:
• Significant differences between loudspeakers
• No significant influence of the room
• Similar to Live test

3 Random Order Test
Binaural reproduction but presenting room, speaker and program in random order
Results:
Highly significant differences between rooms
No significant differences between loudspeakers

Reference: F. Toole, Sound Reproduction, loudspeakers and rooms, focal press

That is Adaptation!
Generates a lot of questions, for example:
How to perform meaningful listening tests?
Poll:

How do you (personally) assess the typical crackling sound found in vinyl records.

A. I never heard this! 0%
B. This crackling rather tickles the ear than obstructs the sound quality. 13%
C. I accept this as an unavoidable artifact in records. 67%
D. This is one of the reason why I preferred CD and other digital storage media. 7%
E. It immediately attracts my attention and it becomes hardly bearable over time. 13%
Poll:

How would you (personally) assess the typical crackling sound found in vinyl records but generated by loose particles in your loudspeaker?

A. I never heard this! 15%
B. This crackling rather tickles the ear than obstructs the sound quality. 0%
C. I accept this as an artefact in some loudspeakers. 0%
D. This is one of the reason why I buy better speakers. 23%
E. It immediately attracts my attention and it becomes hardly bearable over some time. 62%
Cognitive Processing of perceived signal distortion

The cognitive evaluation of the perceived signal distortion is a learning process!

... which depends on time ...

The rating depends on the information provided by the distortion to the listeners.

Linear distortion (amplitude and phase response)
- linear distortions are coherent to the stimulus
- provides no additional relevant information to the listeners
- the listener gets accustomed to it and will ignore it (ADAPTATION, HABITUATION)

Nonlinear and impulsive distortion (rub & buzz)
- the distortion are not directly related to the stimulus (incoherent),
- over time the listener describes the signal distortion as discordant
- the rising awareness makes the distortion unbearable (SENSITIZATION)
Audibility and Audio Quality

Impulsive distortion generated by rub&buzz and other loudspeaker defects

Rated sound quality
10 = "high"
5 = "medium"
0 = "low"

Correct responses
100%
75%
50%

Clearly audible
Just audible
Target performance
Audibility threshold
Non-acceptable

Psychometric function of audibility
By accidental guessing

Scaling of Signal Distortion S_{DIS}

KLIPPEL LIVE #14: Setting meaningful tolerances, 54
Working with Average Values?

Old Wisdom:
„The pond was 50 cm deep on average, but nevertheless the cow drowned."
Remaining Question

Can we neglect the variance in hearing, music and room influence?

No: The sensitization goes on under critical condition!

Solutions:
1. Generating virtual test objects generated by physical modeling and auralization techniques
2. Assessing the influence listening conditions on audio quality by perceptual and physical modeling
3. Automated listening tests on the web to get more insight into the cognitive processing of the end user

Example: Piano music is a critical stimulus for distortion generated by smartphones with side-fire ports!
One Typical Music for all Signal Distortion?

No, the stimulus has a high impact (physical generation, perceptual masking, disturbance to musical idea) on perceived audio quality!

- **Music with strong bass and high dynamics** → sharpness, roughness, nonharmonic content
- **Music with stationary bass (displacement) + violin, singer, flute (sparse high frequency spectrum)** → roughness, non-harmonic content, coloration, sharpness
- **LINEAR DISTORTION**
 - SPL response L(f)
- **TIME-VARYING DISTORTION**
- **IRREGULAR DISTORTION**
 - impulsive distortion ratio IDR(f)
- **NONLINEAR DISTORTION**
- **music (stationary with dense flat spectrum, such as relaxing esoteric wind noise)** → Coloration
- **Multi-channel reproduction of speech and music with systematic level variation** → loudness, ”pumping”, shift in lateralization
Questions, comments ?
Criteria for the Limits?

I. **Audibility** threshold of signal distortion (sensitive ear, critical test condition)

II. Not acceptable degradation of **audio quality** as perceived by a normal end user under typical application condition

III. A significant decrease of the **value** of the audio product as seen by the end-user
Poll:

Would you make a compromise and trade audio quality for other benefits?

A. Never! 0%
B. Yes, if the audio device is significantly smaller, lighter and more convenient. 56%
C. Yes, if the operation time of a battery powered device is significantly extended. 22%
D. Yes, if the output SPL is significantly increased. 0%
E. Yes, other reasons. 22%
Benefits of the Audio Device

Dimensions of the performance space:
- size, volume, shape, weight
- maximum output \((SPL_{\text{max}}, \text{power } P_{a,\text{max}}) \)
- efficiency (power consumption \(P_E \), heating, mobile operation time in battery powered devices)
- perceptual audio quality (spectral and spatial properties, distortion)
- reliability (probability of failure)
- endurance of external stress (overload, environment)
- artistic product design and ergonomics
- technical story
- reputation of the brand, personal identification with the product
- enjoyment or hedonistic preference

Well defined in standards

A central topic in audio engineering

More research required by other experts

KLIPPEL LIVE #14: Setting meaningful tolerances, 61
Value = Benefit Cost Ratio

Performance Sensitivity
\[W = \{w_1, \ldots, w_k, \ldots\} \]

End User Value
\[V \text{ (acceptance, sales volume)} \]

Benefit
\[\text{Benefit (weighted performance)} \]
\[\sum_{k} w_k P_k (D) \]

Cost structure
\[\sum_{j} C_j (D) \]

Objective:
Maximizing the end user value \(V \) with the optimum performance \(P \) and minimum costs \(C_j \)

Design variables
\[D = \{d_1, \ldots, d_k, \ldots\} \]

Performance features in
\[P = \{p_1, \ldots, p_k, \ldots\} \]
\((\text{SPL}_{\text{max}}, \text{THD}, \ldots) \)
Performance Sensitivity w_k weights the Performance characteristics p_k

EXAMPLE: Portable Audio Device (smart phone)
Audio Quality and End-User Value

Distortion generated by regular nonlinearity (force factor $B_l(x)$)

- Target performance (best benefit cost ratio)
- Other benefits (e.g. output, size)
- Acceptable audio quality
- Rated sound quality

Scaling of Signal Distortion S_{DIS}

KLIPPEL LIVE #14: Setting meaningful tolerances , 64
Performance Sensitivity

Distortion generated regular nonlinearities (force factor $B_l(x)$)

![Diagram showing Performance Sensitivity](image)

- Target performance (best benefit cost ratio)
- Tolerance: 6 dB (for generating 25% loss in value)
- ≈ 50% Loss in value
- 12 dB increase of Distortion
- End-user Value

KLIPPEL LIVE #14: Setting meaningful tolerances, 65
Audibility and Audio Quality
Impulsive distortion generated by rub&buzz and other loudspeaker defects

-6 dB -0 dB 6 dB 12 dB 18 dB
Scaling of Signal Distortion S_{DIS}

Acceptable audio quality
Rated sound quality
End-user Value
Non-acceptable

Target performance (best benefit cost ratio)

Other benefits (e.g. output, size)

100%
50%

Rated sound quality

End-user Value

Non-acceptable

Acceptable audio quality
Performance Sensitivity

Impulsive distortion generated by rub&buzz and other loudspeaker defects

- Target performance (best benefit cost ratio)
- 12 dB increase of Distortion
- Tolerance: 3 dB (for generating 25% loss in value)
- 90% loss of end user value

Estimated Performance Sensitivity

End-user Value

Scaling of Signal Distortion S_{DIS}

KLIPPEL LIVE #14: Setting meaningful tolerances , 67
Target Values and Tolerances of Signal Distortion

- **LINEAR DISTORTION**
 - SPL response $L(f)$

- **TIME-VARYING DISTORTION**
 - Amplitude compression $C(f)$

- **IRREGULAR DISTORTION**
 - Impulsive distortion ratio $IDR(f)$

- **NONLINEAR DISTORTION**
 - Multi-tone distortion $MTD(f)$

Limit Values
- L_{IDR}
- D_{IDR}^*
- P_{MTD}^*
- L_{MTD}
- P_C^*
- $ΔD_{IDR}$
- $Δp_C$
- $Δp_{MTD}$

Target Performance for generating maximum end-user value

Useful Tolerances
- Can be determined from the performance sensitivity w_k

KLIPPEL LIVE #14: Setting meaningful tolerances, 68
Life Cycle of an Audio Device

- **Target values**
- **Performance Sensitivity**
- **Audio Quality**
- **End-User Value**

Typical values, tolerances in specifications

Pass-Fail Limits with risk management

KLIPPEL LIVE #14: Setting meaningful tolerances
More about this topic

Webinar presented at the Virtual ALTI-EXPO 2020

Klippel, “Linking Cost, Performance, End-User Satisfaction by Physical and Perceptual Assessment”,

AES Paper:

Demo: Finding Tolerances

Tools: Using dedicated software modules of the KLIPPEL Analyzer

- **Live Audio Analyzer (LAA)**

JBL Bluetooth Speaker (one channel)

Arctic Competitive Bluetooth Speaker (stereo, only left channel is used)
Discussion
Summary

• The human ear is very sensitive for signal distortion under critical conditions
• Audio quality is more than audibility of signal distortion
• Maximizing the end-user value requires a compromise between all performance criteria and cost
• Target values depend on the particular application (end user, environment, stimulus)
• Performance sensitivity is a powerful basis for defining meaningful tolerances
• Pass/Fail limits consider not only the properties of the approved prototype but also the risk of delivering a defective product to the customer
Open Questions

We have now discussed the complexity of the setting limits for assessing audio quality. How can we apply this information for assessing the maximum output?

The last 15th KLIPPEL Live webinar titled 15th Rating the maximum SPL value for product will address the points:

• Best practice for rating maxSPL
• Exploiting background information from design and target application
• Automatic search methods with predefined limits
• Linking IEC 60268-21 with other standards and methods
• Final conclusion of the webinar series
1. Modern audio equipment needs output based testing
2. Standard acoustical tests performed in normal rooms
3. Drawing meaningful conclusions from 3D output measurement
4. Simulated standard condition at a single evaluation point
5. Maximum SPL – giving this value meaning
6. Selecting measurements with high diagnostic value
7. Amplitude Compression – less output at higher amplitudes
8. Harmonic Distortion Measurements – best practice
9. Intermodulation Distortion – music is more than a single tone
10. Impulsive distortion - rub&buzz, abnormal behavior, defects
12. Benchmarking of audio products under standard conditions
13. Auralization of signal distortion – perceptual evaluation
14. Setting meaningful tolerances for signal distortion
15. Rating the maximum SPL value for product