Acoustical Measurement of Sound System Equipment according IEC 60268-21

KLIPPEL- live
a series of webinars presented by
Wolfgang Klippel
1. Modern audio equipment needs output based testing
2. Standard acoustical tests performed in normal rooms
3. Drawing meaningful conclusions from 3D output measurement
4. Simulated standard condition at an evaluation point
5. Maximum SPL – giving this value meaning
6. Selecting measurements with high diagnostic value
7. Amplitude Compression – less output at higher amplitudes
8. Harmonic Distortion Measurements – best practice
9. Intermodulation Distortion – music is more than a single tone
10. Impulsive distortion - rub&buzz, abnormal behavior, defects
11. Benchmarking of audio products under standard conditions
12. Auralization of signal distortion – perceptual evaluation
13. Setting meaningful tolerances for signal distortion
14. Rating the maximum SPL value for a product
15. Smart speaker testing with wireless audio input
10th KLIPPEL live:
脉冲失真 – 异音、异常行为、缺陷
Impulsive distortion - rub&buzz, abnormal behavior, defects

今日话题 Topics today:

• 音频设备的非常规性能概述 Overview on irregular properties of audio devices
• 符合IEC60268-21标准的测量 Measurements according to IEC Standard 60268-21
• 时域测量脉冲失真 Measurement of impulsive distortion in the time domain
• 结合物理测量和听音 Combining physical measurements and listening
Desired and Undesired Components?

Generation of Signal Distortion in an Audio System

- **Stimulus**
 - Input Signal $u(t)$
 - Linear Model $H(s)$
 - $d_l(t)$
 - Regular linear distortion
 - Nonlinear Model $d_n(t)$
 - Regular nonlinear distortion
 - Unpredictable Dynamics $d_i(t)$
 - Excessive nonlinear distortion
 - Noise $n(t)$
 - Output Signal $p(t)$

Undesired Defects
- Rubbing coils, buzzing parts
- Wire beat, coil bottoming
- Loose particles, air leak noise
- Parasitic vibration of other components

Accepted Small Signal Performance

Accepted Large Signal Performance

Undesired time variance (heating)
Poll:

您是如何找出并评估异音和其他非常规失真的？
How do you find and evaluate the rub&buzz and other irregular distortion?

A. 通过聆听音乐 By listening with music
B. 手动扫描+聆听 Manual sweep + listening
C. Chirp+总谐波失真THD Chirp + Total harmonic distortion (THD)
D. Chirp+高阶谐波 Chirp + Higher-order harmonics
E. Chirp+时域分析（时频分析、脉冲失真分析）
Chirp + Time domain analysis (Time-Frequency Analysis, impulsive distortion analysis)
该实验研究激励和输入电压的影响
This Experiment investigates the influence of the stimuli and the input voltage.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Stimulus</th>
<th>Output 1V</th>
<th>Output 2V</th>
<th>Output 3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Tone 20 Hz – 20 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Tone 20 Hz – 1 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinussoidal Sweep 1 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

最灵敏的激励 Most sensitive Stimulus

KLIPPEL-live #10: Impulsive Distortion, 6
Stimuli less critical for Rub & Buzz

stimulus: music
reproduced music at 3 V

symptoms above 5 kHz

stimulus: Full Band Multi-tone complex
reproduced Full Band Multi-tone complex

所有症状被基波分量掩盖
all symptoms masked by fundamental components

KLIPPEL-live #10: Impulsive Distortion, 7
Stimuli critical for Rub & Buzz

Stimulus: multi-tone distortion low pass 1 kHz
reproduced multi-tone distortion low pass 1 kHz at 3 V

Stimulus: sweep
reproduced sweep at 3 V

Symptoms above 1 kHz
Symptoms generated by excitation below 100 Hz
Rub&Buzz, Defects, Irregular Behavior

症状 Symptoms
- 咔哒声、脉冲、猝发音、调制噪声 Clicks, impulses, tone burst, modulated noise
- 低能量并且rms值小 Low power and small rms value
- 较高峰值（脉冲性） higher peak value (impulsive)
- 宽带频谱（不仅有谐波） Broad band spectrum (not only harmonics)

需要特殊的测量技术 Special measurement technique required:
- 时频分析（幅度谱不够） Time-frequency analysis (amplitude spectrum not sufficient)
- 精细结构的时域分析 Time domain analysis of the fine structure
- 新失真度量（如IEC60268-21定义的脉冲失真） New distortion metrics (e.g. Impulsive Distortion as defined in IEC 60268-21)
Basic Requirements to detect Irregular Loudspeaker Defects

- High amplitude is required (displacement x and/or velocity v and/or acceleration a) \(\rightarrow\) Stimulus shall excite all frequencies
- Most defects only produce acoustical symptoms \(\rightarrow\) Sensitive microphone required
- Defects produce high frequency components \(\rightarrow\) Low-pass filtered stimulus and high-pass filtered microphone signal
- Defects are similar to ambient noise \(\rightarrow\) Microphone is located close to the source (near-field measurement)
Frequency Domain Analysis

60 Hz Tone reproduced by a good and bad speaker

High Pass Filtering required to suppress fundamental and low order harmonics

Rub&Buzz
Air Leak
Passed
Failed
ambient noise
简单方法 Simple Approach
只利用高阶谐波的幅值 exploiting amplitude of higher-order harmonics only

问题 PROBLEMS:
• 只对确定性的症状敏感 Sensitive for deterministic symptoms only
• 每个谐波接近于噪声级 each harmonic is close to the noise level
• 对松散微粒和漏气噪声不敏感 insensitive to loose particles and air leakage noise

高阶谐波失真已在IEC60268-21中定义
Higher-order harmonic distortion Are defined in IEC 60268-21

高阶谐波的
RMS值
RMS value of Higher-harmonics

高阶谐波的幅值
amplitude spectrum

频率
frequency

SPL
fundamental

Regular distortion
higher order harmonics

RMS值的高阶谐波
RMS value of higher order harmonics

高阶谐波失真
Higher-order harmonic distortion

IEC60268-21

KLIPPEL-live #10: Impulsive Distortion, 12
Time Frequency Analysis

- Time-Frequency Analysis (TFA)
- Wavelet Transformation
- Best compromise between frequency and time resolution
- Energetic metric (amplitude information)
- Phase information is not used (Most fine structure in the time domain is lost)
Time Domain Analysis

Modeled and measured response

Signal at IN1

\[V \]

Time [ms]

- Measured signal
- Residuum
 \[p_{\text{res}}(t) = p_{\text{meas}}(t) - p_{\text{model}}(t) \]
- Modelled signal
- Harmonics
 - Fundamental
- Residuum in sonogram
- High-pass filtered distortion
- Nonlinear distortion from parasitic vibration
- Low-pass filtered distortion
- Parasitic vibration (mesh)
- + room reflections
Time Domain Analysis

Analysis Techniques:
- Residuum (nonlinear modeling)
- High-pass filtering
- According to IEC 60268-21

→ Exploiting amplitude and phase of higher-harmonics and all non-harmonic components

→ Peak value reveals small transients (clicks)

→ Sensitive for all loudspeaker defects

大多数扬声器缺陷产生带有高波峰系数的脉冲失真。but

常规扬声器失真、电子和麦克风噪声的波峰系数较低

Crest factor

CID

Peak value (ID)

RMS value (MID)
Peak value Contra rms-Value

Measurement technique defined in IEC 60268-21

High-pass filtered Distortion

rms value (MID)

crest factor (CID)

peak value (ID)

脉冲失真ID对大多数非常规缺陷（如异音“rub and buzz”、松散微粒）来说是一个灵敏的测量项目 Impulsive Distortion (ID) is a sensitive measure for most irregular defects such as „rub and buzz“, loose particles!!
Crest factor of high-pass filtered distortion (CID)

Stimulus: Sinusoidal sweep

\[CID(f) = \frac{ID(f)}{MID(f)} \]

- peak-value within one period
- Rms-value averaged over one period

CID can be interpreted on an absolute scale!
CID exploits the phase information of all high frequency components

CID可以在绝对度量上解读！
CID利用所有高频分量的相位信息
CID可以被解释为一个绝对尺度！
CID利用所有高频分量的相位信息

rub & buzz, other disturbances

regular distortion

12 dB
Symptoms of a significant defect:
1. Impulsive distortion ratio $IDR > -40\, \text{dB}$
2. Crest factor of impulsive distortion $CID > 12\, \text{dB}$
Demo

Tools: Using dedicated software modules of the KLIPPEL Analyzer
- TRF PRO (transfer function)
Cross Reference for Characteristics used in TRF

<table>
<thead>
<tr>
<th>IEC60268-21中的特征值</th>
<th>Characteristics in IEC 60268-21</th>
<th>TEF中的特征值</th>
<th>Characteristics in TRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>名称 Name</td>
<td>符号 Symbol</td>
<td>名称 Name</td>
<td>符号 Symbol</td>
</tr>
<tr>
<td>脉冲失真 Impulsive Distortion</td>
<td>ID</td>
<td>高阶失真峰值 Peak value of higher-order distortion</td>
<td>PHD</td>
</tr>
<tr>
<td>平均脉冲失真级 Mean Impulsive Distortion Level</td>
<td>MID</td>
<td>高阶失真均值 Mean value of higher-order distortion</td>
<td>MHD</td>
</tr>
<tr>
<td>脉冲失真波峰系数 Crest factor of Impulsive Distortion</td>
<td>CID</td>
<td>高阶失真波峰系数 Crest factor of higher-order distortion</td>
<td>CHD</td>
</tr>
</tbody>
</table>
Poll:

您如何确定缺陷以及像异音之类的其他非常规行为？
How do you fix defects or other irregular behavior such as rub&buzz？

A. 试错 Trial and error
B. 视检（拆卸设备） Visual inspection (dissembling the device)
C. 用修改的激励做更多的测试（变化幅值） Further testing with modified stimuli (amplitude variation)
D. 与其他物理特征相关 Correlation with other physical characteristics
E. 其他方法 Other ways
扬声器缺陷的典型特征
Characteristic Features of Loudspeaker Defects

线圈打击底板
Coil hitting backplate

嗡嗡的松动接口
Buzzing loose joint

音圈擦圈
Rubbing voice coil

漏气处的流动噪声
Flow noise at air leak

松散微粒打击膜片
Loose particle hitting membrane

确定性的
Deterministic

半随机（混合特征）
Semi-random
(mixed characteristic)

随机
Random

波形可完全重现
Waveform is completely reproducible

包络可重现（波形不行）
Envelope is reproducible (Waveform is not)

波形不可重现
Waveform is not reproducible

KLIPPEL-live #10: Impulsive Distortion, 22
Separating Symptoms of a Defect

High-pass Filter
cut-off frequency $f_c > 10f$

SPL

fundamental

2nd
3rd
Regular distortion

Symptoms of defects

noise level

frequency

High-pass filtered symptoms and noise

Deterministic part
(higher-order harmonics)

Random part
(non-harmonics)

Comb Filter

Inverse Comb Filter

Order $n > 10th$

KLIPPEL-live #10: Impulsive Distortion, 23
扬声器缺陷：音圈打底
Loudspeaker Defect: Voice Coil Bottoming

根本原因 Root causes:
• 静止位置偏移、DC位移 offset in rest position, DC displacement
• 高音圈行程 high voice coil excursion
• 音圈位移的硬限制 hard limiting of the voice coil displacement

症状Symptoms:
脉冲性、确定性、峰值行程处的咔哒声 impulsive, deterministic, click at peak excursion

Voice coil
backplate
backplate
backplate
backplate

click
one period

KLIPPEL-live #10: Impulsive Distortion, 24
例子 Example:
拉伸击打、打底 tensile slap, bottoming

症状 Symptoms:
• 可重现、可重复 Reproducible, repeatable
• 与激励相关 Related with stimulus
• 脉冲失真 impulsive distortion
• 高阶谐波的确定性幅值和相位 Deterministic amplitude and phase of higher-order harmonics

Results of three measurements
扬声器缺陷：嗡嗡声问题
Loudspeaker Defect: *Buzz problem*

根本原因 Root cause
- 松动部分表现为非线性振子
 - loose part behaves as a *nonlinear oscillator*
- 由激励驱动和同步
 - powered and synchronized by stimulus
- 在临界振幅之上出现
 - active above a critical amplitude
- 新的振动模式
 - new mode of vibration

症状Symptoms:
- 特征频率处的短暂猝发音、
 - short tone burst at characteristic frequency,
- 部分确定性、脉冲性
 - partly deterministic, impulsive

Diagram:
- Force
- Mass
- Loose joint
- Spring
- Vibration
- Tone burst
- One period
扬声器缺陷：音圈擦圈
Loudspeaker Defect: Voice Coil Rubbing

根本原因 Root causes:
• 质量、刚性、BI分布不平衡
 imbalances in mass, stiffness, BI distribution
• 高音圈位移激发摇摆模式
 high coil displacement excites rocking mode
• 在特定位置线圈擦圈 coil rubbing at a certain coil position

症状 Symptoms:
随机信号、被激励调制、脉冲猝发
stochastic signal, modulated by the stimulus, impulsive burst

图示:
- Voice coil
- gap
- voice coil rubbing
- distortion burst
- one period

Cause: rocking mode at 328 Hz
扬声器缺陷：空气噪声
Loudspeaker Defect: Air Noise

根本原因 Root cause:
• 防尘帽、箱体等泄漏 leakage in dust cap, box, …
• 线圈位移产生空气压力 coil displacement generates air pressure
• 高压引起泄漏处的高空气速 High pressure causes high air velocity at the leakage
• 周期内湍流产生噪声猝发 Turbulences generate a noise burst in the period

症状 Symptoms:
随机信号、噪声被激励调制、脉冲噪声猝发 stochastic signal, noise is modulated by the stimulus, impulsive noise burst
随机失真 Random Distortion

例子 Example:
泄漏处的湍流空气噪声、线圈擦圈
Turbulent air noise generated at leaks, coil rubbing

症状 Symptoms:
• 失真不能重现
Distortion are NOT reproducible
• 失真出现在某些时刻
Distortion occur at particular times
• 密集谱（覆盖音频带及之上）
Dense spectrum (cover audio band and beyond)
Envelope of the Modulated Noise

- Envelope of the modulated noise is deterministic
- Averaging of the envelope increases signal to noise ratio

Averaged Envelope
How to Calculate the Envelope?

Single tone

Comb-Filter

Demodulation

Comb-Filter

\[p(t) \]
\[p_f(t) \]
\[p_r(t) \]
\[e(t) \]

Fundamental

regular

Envelope

Ensemble

Frequency

Time

Demodulation

Comb-Filter

Ensemble

Frequency

Time

Ensemble

Frequency

Time

KLIPPEL-live #10: Impulsive Distortion, 31
Combining Subjective and Objective Assessment

Objectives:
- Auralization of Irregular Distortion
- Ear Protection
- Signal Transformation
- Defect Localization
- Diagnostics
Localization of Loudspeaker Defects

Air Leak

Relative Modulation

Good

Bad

KLIPPEL-live #10: Impulsive Distortion, 33
扬声器缺陷：松散微粒
Loudspeaker Defect: Loose Particles

根本原因 Root Cause
- 微粒被音盆位移加速 particles are accelerated by cone displacement
- 任何时候的弹跳产生小的咔哒声 bouncing generates a short click any time

症状 Symptoms:
随机、与激励不同步、高峰值SPL但输出能量低、脉冲性
random, not synchronized with stimulus, high peak SPL but low output power, impulsive
Fine Structure Analysis

1) 映射残余（瞬时波峰系数ICID）到换能器状态量
Mapping the residuum (instantaneous crest factor ICID) versus transducer state
- 音圈位移 Voice coil displacement
- 声压（加速度） Sound pressure (acceleration)

2) 人耳聆听过采样的残余（减速10倍）
Human ear listening to the upsampled residuum (slowdown factor 10)
Impulsive Distortion mapped versus State Signal

Instantaneous crest factor of impulsive distortion (ICID)

good 12 dB **bad**

Displacement

Sound Pressure

Signal at IN1 [V]

Frequency [Hz]

100 200 500 1k 2k

Frequency of sine sweep

time

KLIPPEL-live #10: Impulsive Distortion, 37
Demo

Tools: Using dedicated software modules of the KLIPPEL Analyzer
- TRF PRO (transfer function)
- TRF Stepping
- TFA (time frequency analysis)
- PLAY (audio player for fine structure analysis)
3D Limits in End-of-Line Testing

LIMIT MODE (GOLDEN REFERENCE Device)

Exceedence\((f,t) = \text{SPL}_{\text{meas}}(f,t) - \text{Limit}(f,t) \)**

Classification:
- **PASS:** negative exceedence value (green)
- **FAIL:** positive Exceedence value (red)
3D Limits in End-of-Line Testing

On-Line MODE
(DUT without defect)

Measured SPL(f,t)

Limit(f,t)

Exceedence(f,t)

PASS

Frequency Response
Average Level
Polarity
THD
2nd Harmonic
3rd Harmonic
Rurb+Buzz
3DL - Spectrogram

KLIPPEL-live #10: Impulsive Distortion, 40
3D Limits in End-of-Line Testing

On-Line MODE (DUT with defect)

Measured SPL(f,t)

Limit(f,t)

Exceedence(f,t)

FAIL

Statistics:
- Frequency Response
- Average Level
- Polarity
- THD
- 2nd Harmonic
- 3rd Harmonic
- Rub+Buzz
- 3DL - Spectrogram

KLIPPEL-live #10: Impulsive Distortion, 41
Demo

Tools: Using dedicated software modules of the KLIPPEL Analyzer

- QC Software (SPL Task with 3D limits)
Discussion
Summary

- 正弦信号 (chirp) 是检测非常规失真非常灵敏的激励
 A sinusoidal signal (chirp) is a very sensitive stimulus for irregular distortion
- 使用灵敏的麦克风并置于近场
 Use a sensitive microphone place in the near field
- 在时域查看失真 (残余)
 Inspect the distortion (residuum) in the time domain
- 搜索根本原因并修复它
 Search for the root cause and fix it
- 聆听过采样的失真并查看精细结构
 Listen to the up-sampled distortion signal to inspect the fine structure
- 不要寄送缺陷单元给客户 (大多数非常规失真随着时间会变得更糟)
 Do not ship a defective unit to a customer (most irregular distortion become worse over time)
Open Questions

到目前为止，我们使用常规的模拟输入通道进行测试。如何测试带有数字甚至无线输入的现代设备呢？
Up to now we have used the conventional analog input channel for testing. How can modern equipment with a digital and even a wireless input be tested？

第11期网络研讨会主题
The next 11th KLIPPEL live webinar entitled
测试无线音频设备的困难之处
Pitfalls in Testing Wireless Audio Devices (July 22nd)

将讨论 will address the points:
• 新问题概览 Overview on new problems
• 处理长时且可变的时延、采样率漂移、掉线、毛刺 Coping with long and variable time delay, sample rate drift, dropouts, glitches
• 如何在全息测试和3D声音应用中进行精确的相位测量 How to perform accurate phase measurements required for holographic testing and 3D sound application
• 简单实用的R&D和QC终端线解决方案 Simple and practical solutions for R&D and QC end-of-line
1. Modern audio equipment needs output based testing
2. Standard acoustical tests performed in normal rooms
3. Drawing meaningful conclusions from 3D output measurement
4. Simulated standard condition at a single evaluation point
5. Maximum SPL – giving this value meaning
6. Selecting measurements with high diagnostic value
7. Amplitude Compression – less output at higher amplitudes
8. Harmonic Distortion Measurements – best practice
9. Intermodulation Distortion – music is more than a single tone
10. Impulsive distortion - rub & buzz, abnormal behavior, defects

ASK KLIPPEL TEAM (July 1st)

--- break ---
11. Pitfalls in Testing Wireless Audio Devices (July 22nd)
12. Benchmarking of audio products under standard conditions
13. Auralization of signal distortion – perceptual evaluation
14. Setting meaningful tolerances for signal distortion
15. Rating the maximum SPL value for product