2nd KLIPPEL LIVE webinar

第二次KLIPPEL LIVE网络研讨会

Standard acoustical tests performed in normal rooms

在普通房间进行标准声学测试

Topics today

今日话题

- 1. Problems in practical free-field measurements
 - 实际自由场测量中的问题
- 2. Alternatives: SIMULATED free-field conditions
 - 替代方案:模拟自由场条件
- 3. The practical limits of direct sound windowing
 - 直达声加窗处理的实际限制
- 4. A powerful solution: Near Field Scanning
 - 强大的解决方案:近场扫描
- 5. Practical Demo in an office room
 - 在普通办公室里进行实践演示
- 6. Questions, Discussion
 - 问题、讨论

Acoustical Standard Measurements

声学标准测量

- 1. Far-Field Measurement under free field condition
 - 自由场条件下的远场测量
 - **Measurement in free air** ("flying" speaker, ground floor measurement) **自由空气中的测量** (悬吊扬声器, 地面测量)
 - Anechoic Chambers (half space, full space) 消声室(半空间,全空间)
- 2. Far-Field Measurement under simulated free-field conditions 模拟自由场条件下的远场测量
 - Non-anechoic testing (minimum distance to boundaries) + windowing the impulse response (suppressing reflections) 非消声测试(到边界的最小距离)+ 脉冲响应加窗处理(抑制反射)
- 3. Near-Field Measurement under simulated far-field, free-field conditions 模拟远场、自由场条件下的近场测量
 - Near-field scanning in any non-anechoic environment + wave expansion + direct sound separation + far field extrapolation 在任何非消声环境中的近场扫描+波形扩展+直达声分离+远场外推

Applicable to a normal office room 适用于普通办公室

自由场条件下的远场测量

Problems:

<u>问题:</u>

- Low frequency measurements (accuracy, resolution) limited by acoustical environment 低频测量(精度、分辨率)受声学环境的限制
- ・ **High** frequency measurements require **far-field** conditions (room size?) **高坂**测量需要**元场**条件(房间大小?)
- Accuracy of the phase response in the far-field depends on temperature deviations and air movement
 - 远场中**相位响应**的精度取决于温度偏差和空气 流动
- An anechoic chamber is an expensive and long-term investment which cannot be moved easily
 - **消声室**是一项昂贵且长期的投资,无法轻松移动

Problems in the Far-Field 远场中的问题

Phase response depends on air temperature 相位响应取决于空气温度

Sound velocity is dependent on air conditions (e.g. temperature) 声速取决于空气条件 (例如温度)

$$\theta_1 = 20^{\circ}C \rightarrow c_1 = 343.4 m/s$$

A temperature difference of $\Delta\vartheta$ =2°C will change the sound velocity by $\Delta c\approx$ 1.2 m/s

$$\theta_2 = 22^{\circ}C \rightarrow c_2 = 344.6m/s$$

 $\Delta \vartheta = 2$ °C的温差将使声速改变∆c≈1.2m/s

$$\theta_3 = 24^{\circ}C \rightarrow c_3 = 345.8 m/s$$

Depending on the distance, the temperature difference will influence the sound wave propagation time: 根据距离的不同,温差会影响声波的传播时间:

Deviation: 偏差: $\Delta t = 0.05ms$ $(\Delta r = 17.2mm)$

Phase error caused by temperature difference of 2°C 2°C的温差引起的相位误差

Frequency 频率	Wave length 波长	Phase Error in 5 m distance 5 m距离内的相位误差	
<i>f</i> =2kHz	λ=171.7mm	36° (0.1 λ)	
<i>f</i> =5kHz	λ=68.7mm	90° (0.25 λ)	
<i>f</i> =10kHz	λ=34.3mm	180° (0.5 λ)	

Far field measurement are prone to phase errors!

远场测量容易出现相位误差

Far-Field Measurement under simulated free-field conditions

模拟自由场条件下远场测量

Technology 技术

Using **gating** or **windowing** the impulse response (Heyser 1967-69, Berman and Fincham 1973) to separate direct sound from room reflections

使用**门控**或**加窗**脉冲响应(Heyser 1967-69,Berman和Fincham 1973) 将直达声与房间反射分开

Benefits 优点

- Good suppression of room reflections at <u>higher</u> frequencies 在较高频率处良好地抑制房间反射
- Higher SNR due to ambient noise separation 由于环境噪声分离,SNR更高

Problems 问题:

- <u>Short distance</u> to boundaries requires <u>short window</u> to separate direct sound from reflected sound 与边界的距离较短,需要短时窗才能将直达声与反射声音分开
- Window length limits the <u>frequency resolution</u> 时窗长度限制了频率分辨率
- <u>Short</u> windows can cause significant errors at <u>low</u> frequencies <u>低频</u>处的<u>短</u>时窗可能会导致显著错误

Poll:

投票:

Do you use windowing (or other gating techniques) for separating the direct sound?

您是否使用加窗(或其他门控技术)来分离直达 声?

- always
- · sometimes 有时
- · never 从不

短时窗的问题

$$d_{\mathbf{r}} = 2\sqrt{\left(\frac{1}{2}d_{\mathbf{m}\mathbf{s}}\right)^{2} + (d_{\mathbf{s}\mathbf{r}})^{2}}$$

$$T_{w} < T_{max} = \frac{d_{r} - d_{ms}}{c}$$

$$T_w < T_{max} = \frac{d_T - d_{ms}}{c}$$

近场测量

Advantages 优点:

- ・ High SNR 高信噪比
- Amplitude of **direct sound** much greater than room reflections providing good conditions for simulated free field conditions **直达声**的幅值远大于室内反射,为模拟自由场条件提供了良好条件
- Minimal influence from air properties (air convection, temperature deviations)
 交信性サイクを与かる。自由を住主した。

空气特性(空气对流、温度偏差)的影响最小

Disadvantages 缺点:

- Not a plane wave 不是平面波
- Velocity and sound pressure are out of phase 速度和声压异相
- · 1/r law does not apply, therefore, no sound pressure extrapolation into the far-field (holographic processing required)

 1/r法则不再适用,因此,声压不能外推至远场(需要全息处理)

Good SNR in the Near-Field!

近场中信噪比好!

Near-field measurements have the following benefits:

近场测量具有以下优点:

- Higher SNR (typically 20 dB more than far field measurements)
 - 更高SNR (通常比远场测量高20 dB)
- · Measurement can tolerate some **ambient noise** (office, workshop)
 测量可以容忍一些**环境噪声**(办公室、车间)
- Faster measurements since no averaging required
 - 无需平均,测量速度更快

Short History on Near-Field Measurements

近场测量的简史

Single-point measurement

close to the source

接近声源的单点测量

Don Keele 1974

Multiple-point measurement on a defined axis 在定义轴上的**多点测量**

Scanning the sound field on a surface around the source 在声源周围的表面**扫描声场**

Weinreich (1980), Evert Start (2000) Melon, Langrenne, Garcia (2009) Bi (2012)

Robotics required 需要机器人

Postprocessing of the scanned data required 需要对扫描数据进行后处理

Poll:

投票:

Do you use Don Keele's **single point measurement** for subwoofers (sealed boxes)?

您是否使用Don Keele的**单点测量方法**测量超低音 扬声器(密封箱体)?

- always
 - 总是
- sometimes
 - 有时
- never
 - 从不

使用球面波和汉克尔函数作为基本函数的 全息测量

1st step: Measurement 第一步: 测量

 <u>Scanning</u> the sound pressure in the near field of the source at a single or multiple surfaces

在单个或多个表面上扫描声源近场中的声压

2nd step: Holographic Data Processing

第二步:全息数据处理

- <u>Expansion</u> into spherical waves using Legendre and Hankel functions 使用Legendre和Hankel函数扩展为球面波
- Optimal estimation of the free parameters of the expansion (order N(f) and coefficients <u>C(f)</u>)
 波形展开中自由参数 (阶数N(f)和系数C(f))

的最佳估计

3rd step: Extrapolation 第三步: 外推

- Calculation of the **transfer function** $\underline{H}(\mathbf{r},f)$ between input u and sound pressure $\underline{p}(\mathbf{r})$ at an arbitrary point \mathbf{r} in the 3D space outside the scanning surface
 - 计算输入u和扫描表面外部3D空间中任意点r处的声压p(r)之间的传递函数H(r,f)
- Calculation of derived characteristics (directivity, beam pattern, sound power)

计算**派生特性**(方向性、波束方向图、声功率)

Holographic Nearfield Measurement

全息近场测量

Number of points application 点数 应用 In-situ testing 现场测试 Subwoofer sound power 100 Directivity full-band single plane symmetry Directivity full-band no symmetry 非对称全频带扬声器的 方向性 1000 Professional Speakers Sound bars 5000

Number of scanning points M depends on:

扫描点数M取决于:

Total number of coefficients J in the expansion (M>1.5J)

展开时**系数**J的总数(M> 1.5J)

• Maximum **order** N of the expansion $J=(N+1)^2$

展开的最大**阶数**N: J=(N+1)²

• Loudspeaker type (size, number of transducers)

扬声器类型 (尺寸、换能单元数量)

• **Symmetry** of the loudspeaker (axial symmetry)

扬声器的**对称性**(轴向对称性)

Application of the data (e.g. EASE data)

数据的**应用**(例如EASE数据)

Field separation (non-anechoic conditions)

声场分离 (非消声条件)

Benefit of using a Spherical Wave Expansion:

使用球面波展开的好处

Number of measurements points M required is **much lower** than the final angular resolution of the calculated directivity pattern!

所需的测量点数M远低于所算方向图的最终角分辨率!

How long is the Measurement?

测量多长时间?

The measurement time depends

测量时间取决于

- → fitting error in the wave expansion (self-test)
- →波形展开中的**拟合**误差(自检)
- → optimum **order** N of the wave expansion
- →波形展开的最佳**阶数**N
- → number of the Scanning Points
- →扫描点数
- → speed of the robotics
- →机器人的速度

Directivity at 2kHz: 2kHz处的方向性:

Condition for used Spherical harmonics:

使用的球谐条件:

All orders used

需要使用所有阶

Number of Coefficients:

系数数量:

$$J = (N+1)^2$$

Ν

n=0

Single Plane Symmetry (1PS) 单平面对称(1PS)

symmetry axis aligned to the coordinate system $\phi_s=0$ 对称轴对准坐标系 $\phi_S=0$

Simple coupling of the coefficients on the left side (m < 0) on the right side (m > 0)

左侧 (m < 0) 和右侧系数 (m > 0) 的简单耦合

$$C_{mn}(f) = C_{-mn}(f)(-1)^m \quad \text{with} \quad \begin{array}{c} 0 \le m \\ 0 \le n \le N \end{array}$$

Reduction of Coefficients:

系数数量减少:

48%

(compared to no symmetry, for N = 30) (与无对称比较, N = 30)

Automatic Check for Single Plane Symmetry 自动检查单平面对称性

- · Additional Scanning Points 附加扫描点
- ・ Metric S_{IPS} > 0.95 度量标准S_{IPS} > 0.95

Dual Plane Symmetry (2PS) 双平面对称 (2PS)

symmetry axes ϕ_s =0 and ϕ_s = 90° aligned to the coordinate system 对称轴 ϕ_S =0和 ϕ_S = 90°对准坐标系

Simple coupling of the coefficients on the left side (m < 0) on the right side (m > 0)

左侧 (m < 0) 和右侧系数 (m > 0) 的简单耦合

$$C_{-(m-1)n}(f) = 0$$

$$C_{(m-1)n}(f) = 0$$

$$C_{mn}(f) = C_{-mn}(f)(-1)^{m}$$

$$m = 2s, s = 1,2,3$$

Reduction of Coefficients:

系数数量减少:

73%

(compared to no symmetry, for N = 30) (与无对称比较, N = 30)

Automatic Check for Dual Plane Symmetry 自动检查双平面对称性

- Additional Scanning Points附加扫描点
- Metric S_{2PS} > 0.95 度量标准S_{2PS} > 0.95

Rotational Symmetry (RS) 旋转对称 (RS) no phi dependency 与phi无关

Condition for used Spherical harmonics:

使用的球谐条件:

$$C_{mn} = 0$$
 $m \neq 0$

Reduction of Coefficients:

系数数量减少:

97%

(compared to no symmetry, for N = 30) (与无对称比较, N = 30)

Automatic Check for rotational Symmetry 自动检查旋转对称

- Additional Scanning Points
 附加扫描点
- Metric $S_{RS} > 0.95$ **度量标准S**_{RS} > 0.95

Reduction of Scanning Effort 減少扫描工作量 (Loudspeaker System) (扬声器系统)

Example: wave expansion with maximum order N=30

示例:最大阶数N=30的波扩展

Symmetry 对称性	Number of Coefficients 系数数量	Reduction of measurement samples 减少测量样本量
No Symmetry 无对称	961	0%
Single plane symmetry 单平面对称	496	48%
Dual plane symmetry 双平面对称	256	73%
Rotational symmetry 旋转对称	31	97%

Knowing the **symmetry properties** (a prior user input or automatic detection) can reduce the number of **measurement points** significantly.

了解**对称属性**(用户预先输入或自动检测)可以大大减少测量点的数量。

Direct Sound Separation 直达声分离

measurement performed in a normal office 在普通办公室进行测量

Double layer scanning +
holographic processing allows
separation of direct sound from
room reflections
双层扫描+全息处理
可以将直达声与房间反射
分开

Live Near-field Measurement

现场近场测量

Our Expert Today: Christian Bellman

今天的专家: Christian Bellman

Holographic Measurements 全息测量

Near Field Scanning + Wave Expansion + Direct Sound Extrapolation 近场扫描+波形展开+直达声外推

Summary 总结

Nearfield measurement has a <u>better SNR</u> than far-field test

近场测量比远场测试具有<u>更好的SNR</u>

• Comprehensive assessment of direct sound in 3D space (near + far field)

全面评估3D空间(<u>近场+远场</u>)中的直达声

Self-check of the test using the fitting error

使用拟合误差对测试进行自检

• Accurate phase and time delay information (speaker is not moved)

准确的相位和时间延迟信息(扬声器未移动)

Angular <u>resolution</u> is larger than number of coefficients

角分辨率大干系数数量

<u>No anechoic room</u> required

无需消声室

Discussion 讨论

Open Questions

开放性问题

Direct sound field can be measured at any point outside the scanning surface at high accuracy!

可以在扫描表面以外的任何位置以高精度测量直达声声场!

How to present and <u>interpret</u> the 3D sound data?

如何呈现和解读3D声音数据?

What is important for my application?

哪些对我的应用重要?

The upcoming 3rd webinar will address:

即将举行的第三次网络研讨会将讨论:

Far field <u>directivity</u> (e.g. professional application)

远场方向性(例如专业应用)

• <u>Mean values</u> at selected angles (spin-o-rama) (e.g. consumer-home application)

选定角度的<u>平均值</u>(spin-o-rama)(例如家用消费级应用)

Mean values of a <u>listening zone</u> in 3D space (e.g. personal audio devices)

3D空间中<u>听音区</u>的平均值(例如个人音频设备)

Accurate <u>complex data</u> for beam steering (e.g. loudspeaker panels)

波束成形的准确<u>复数据</u>(例如扬声器面板)

Next Webinar

下一次网络研讨会

- 1. 现代音频设备需要基于输出的测试 Modern audio equipment needs output based testing
- 2. 普通房间中进行标准声学测试 Standard acoustical tests performed in normal rooms
- 3. 从3D输出测量中获取有意义的结论 Drawing meaningful conclusions from 3D output measurement
- 4. 评估点处的模拟标准条件 Simulated standard condition at an evaluation point
- 5. 最大SPL 赋予该值意义 Maximum SPL giving this value meaning
- 6. 选择具有高诊断意义得测量 Selecting measurements with high diagnostic value
- 7. 幅值压缩 输入更高但输出更低 Amplitude Compression less output at higher amplitudes
- 8. 谐波失真测量 最佳实践 Harmonic Distortion Measurements best practice
- 9. 互调失真 音乐比单音信号更多 Intermodulation Distortion music is more than a single tone
- 10. 脉冲失真 异音、异常行为、缺陷 Impulsive distortion rub&buzz, abnormal behavior, defects
- 11. 标准条件下音频产品的基准 Benchmarking of audio products under standard conditions
- 12. 信号失真的可听化 感知评估 Auralization of signal distortion perceptual evaluation
- 13. 为信号失真设定有意义的公差 Setting meaningful tolerances for signal distortion
- 14. 评定产品的最大SPL值 Rating the maximum SPL value for a product
- 15. 带无线音频输入的智能音箱测试 Smart speaker testing with wireless audio input

Thank You! 非常感谢!

