
 

 

Optimal Material Parameter Estimation by Fitting Finite 
Element Simulations to Loudspeaker Measurements  

William Cardenas, Wolfgang Klippel, KLIPPEL GmbH, Dresden, Germany 

Important characteristics for the sound quality of loudspeakers like frequency response and directivity are determined by the 
size, geometry and material parameters of the components interfacing the acoustic field. The higher-order modes after cone 
break-up play and important role in wideband transducers and require a careful design of the cone, surround and other soft 
parts to achieve the desired performance. Finite Element Analysis is a powerful simulation tool but requires accurate material 
parameters (complex Young’s modulus as a function of frequency) to provide meaningful results. This paper addresses this 
problem and provides optimal material parameters by fitting the FEA model to an existing loudspeaker prototype measured 
by Laser vibrometry. This method validates the accuracy of the FEA simulation and gives further information to improve the 
modeling.  

1 Introduction 
Finite Element simulations become a powerful tool 
in the transducer design process only if they 
represent with sufficient accuracy the behaviour of 
the real loudspeakers. Since most of the information 
required to build a good simulation such as 
geometry and material densities, are available at the 
early stages of the design, the elasticity properties 
cannot be easily found at higher frequencies.  
Even when the Young’s modulus of the materials 
used in the assembly are measured based on 
standard techniques (e.g. ASTM E 756-93) using 
small sample taken from a flat sheet of the 
component and claimed as a hanging beam and 
excited pneumatically at the fundamental resonance 
as shown in Figure 1. The material parameters 
measured at low frequencies (< 150 Hz) used in 
Finite Element (FE) simulation do not describe the 
loudspeaker behaviour at higher frequencies. The 
soft materials (e.g. paper, rubber, fabric, plastic, …) 
used in the suspension and radiator shows a high 
dependency on the frequency and ambient 
temperature. Furthermore, the treatment of the 
components during the assembling process such as 
forming, gluing and combining to composite 
structures changes the material properties 
significantly.  
In order to ensure accurate simulations for low and 
high frequencies, effective material parameters of 
the treated components as assembled in the final 
transducer need to be determined. Using the voice 
coil for the exciting the mechanical structure is also 
the best way to generate significant mechanical 
vibration at higher frequencies.   
 

 
 

Figure 1. Simple beam technique to measure the 
Young’s E-modulus and loss factor at low 

frequencies   

 
Many techniques are developed for the updating of 
structural FE models in other disciplines like; 
bridges, helicopters [8], cars chassis, PCBs 
automotive etc. Some of these works [9] deal with 
the adjusting of geometrical or material parameters 
based on the minimization of the difference between 
the Frequency Response Functions FRF or the 
Modal parameters. Due to the nature of the material 
used on these structures, usually metals, concrete or 
hard plastics and the reduced frequency ranges of 
operation, the elastic properties in most of the cases 
can be modelled independent on the frequency and 
still producing accurate results.  
 
In the case of the loudspeakers the engineers deal 
with devices which cover more than 10 octaves of 
bandwidth and a very diverse type of materials from 
soft like rubbers or foams, paper and other 
composites to hard ones like aluminium. Some of 
the materials used in the loudspeaker industry 
exhibit relevant viscoelastic characteristics and a FE 



 

 

simulation valid on the full band requires this 
frequency dependencies. This work deal with the 
estimation of the effective material parameters of the 
transducer components required for accurate 
simulations on the audio band using a laser scanner 
technique and Modal Analysis.         
 
This paper proposes a technique to estimate the 
effective Complex Young’s modulus of the 
materials scanned by laser vibrometer, which 
minimizes the error between the FE model and the 
scanned vibration of a real transducer. This fitting 
process is performed on the basis of modal 
parameters (Mode shapes and resonance 
frequencies) extracted from scanned vibration data 
and the eigenvalue solution (eigenvalues and 
eigenvectors) computed by the FE model.      
Section 2 will describe the fitting process in greater 
detail followed by the presentation of the proposed 
Modal Analysis technique in Section 3 and updating 
of the FE model in section 4. In the last section the 
procedure will be illustrated on a practical example.   

2 Optimal Parameter Estimation 
Procedure 

The most convenient way to increase the agreement 
between the physical loudspeaker and its FE Model 
is to adjust the modal basis. The FE eigenvalue 
analysis is the most time and computationally 
effective way to calculate the modal parameters of 
the FEA model in contrast to the forced harmonic 
analysis, which requires the inversion of the FE 
matrices for the complete frequency range [8].  
 
The general overview to extract the Complex 
Young’s Modulus of a built transducer is shown in 
Figure 2.          
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Figure 2. Overview of the material Parameter 
Estimation of loudspeaker components   

The FE model provides the eigenvalues and 
eigenvectors of the structure corresponding to the 
natural frequencies, mode shapes and modal 
damping satisfying the homogeneous equation of 
motion with the boundary conditions. The vibration 
on the radiating surface is measured by laser 

vibrometry and used to extract the modal parameters 
of the physical transducer by Modal Analysis. 
The simulated mode shapes and resonances 
frequencies (FEA eigenvalue solution) are compared 
with the measured mode shapes and resonance 
frequencies. An optimization algorithm based on the 
sensitivity of the FE eigenvalue solution with respect 
to the material changes of each component on the 
radiator surface, updates the parameters that reduces 
the difference between the mode shapes and 
resonance frequencies. This process is performed for 
all dominant modes found in the laser measurement 
producing the optimal material parameter at the 
different resonance frequencies.   

3  Modal Analysis for Loudspeakers 

3.1  Theory  

The electromechanical transfer function (voltage 
displacement) Hx measured at each scanning point, 
is transformed into the pure mechanical transfer 
function Hx/F via the Bl factor and the electrical 
impedance Ze of the transducer at each frequency ω. 
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The modal analysis technique assumes that the 
vibration field measured on the transducer surface 
X(r,ω), can be represented by the superposition of an 
infinite amount of modes. 
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At each point r on the surface, the displacement is 
the product of the mode shape φn(r) and the modal 
resonator qn(ω) 

222
)(

nnn

n
n j

g
q





  (3) 

described by the resonance frequency ωn, the modal 
damping factor ηn and the modal complex gain gn. 
In practice, only a few dominant modes have 
relevant impact on the mechano-acoustical 
performance of the driver and should be considered 
in the material parameter extraction process, 
simulation and in design optimization. The 
displacement produced by the superposition of these 
N dominant modes is called modal displacement 
Xmod: 
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The difference between the measured and the modal 
displacements is called the residual displacement  

mod( , )resX X X  r  (5) 



 

 

which contains the rest of low energy modes and the 
noise present in the measurement.  

3.2  Modal Parameter Extraction  

To extract the modal parameters of a vibration 
scanner measurement of the transducer, a technique 
based on Singular Value Decomposition (SVD) and 
circle fitting is developed see Figure 3.   
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Figure 3. Processing loop to extract modal 
parameters from scanner measurements. 

The measured displacement X(r,ω)  is used to 
compute the Accumulated Acceleration Level 
(AALi) at the iteration i=1, which provides a 
measure of the mechanical energy integrated over 
the radiator surface[1]. An automatic peak detection 
routine provides the set of frequencies fi 
corresponding with the most energetic modes 
present in the measurement, as shown in Figure 4. 
These frequencies are used to window the measured 
displacement transfer function X(r,ω) at frequencies 
close to the dominant resonance peaks.  
Each of these w blocks of data Xw is arranged in a 
matrix containing the displacement of each 
measured point at each frequency of the window in 
its columns. 
A Singular Value Decomposition of each block is 
performed in order to extract the dominant patterns 
found in the data:  
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Where uk and vk are the left and right k-th singular 
vectors and σk is the k-th singular value of Xw.  
Assuming that in the windowed block the 
participation of the dominant mode n is greater than 
the other contributing modes, the modal 
displacement Xw,mod in equation (4) comprising only 
the dominant mode n can be written in terms of the 
first singular values k=1 as follows: 
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Since the windows correspond to the resonance 
peaks where the particular modes are more excited, 
the first singular values of each SVD set provides 
the best representation of the shape and frequency 
response of the dominant mode, filtering out other 
orthogonal modes active in the region, other possible 

optical artefacts and noise produced in the 
measurement.  Under this assumption, the following 
equivalences can be derived as:     
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The n-th mode shape φn can be extracted directly 
from the left singular vector u1 and the modal 
parameters of the resonator qn(ω) need to be 
estimated from the product of the singular value σ1 
with the right singular vector v1 using a system 
identification method called circle fitting as 
illustrated in Figure 3.  
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 Figure 4. Internal process SVD and Circle Fitting 

for extraction of modal parameters  

Even if the equivalence in (8) of the modal resonator 
and the singular value is valid only in the window 
interval [ωl, ωu], the estimated parameters are valid 
for the whole frequency band due to the assumption 
done in equation (2).   
The full set of modal parameters Pn = {ωn ηn gn φn} 
of the dominant modes are extracted and the modal 
displacement can be computed using the 
accumulated superposition of the extracted modes 
according equation (4). Since each mode is extracted 
on a different window and no interaction between 
the modes is taken into account, a final fine tuning 
of all the modal parameters is required to guarantee 
that the superposition is consistent with the 
measured data.   
The modal displacement Xmod is subtracted from the 
initial displacement generating a residual 
displacement Xres which is the input of the peak 
detection containing a new sets of lower energy 
modes that can be extracted in the same way. This 
process can be repeated until the residual vibration is 
only noise or vibration artefacts produced by the 
subtraction of non-orthogonal information contained 
in the previews modes.  

3.2.1 Identification of Modal 
Resonators 

Equation (4) provides a structure of the model to be 
identified using the scanner data, a set of N parallel 
poles without zeros. To keep the structure of the 
model, a Single Degree of Freedom (SDOF) 
algorithm is preferred for the loudspeaker because it 
focuses on the best fitting of the dominant peaks 
avoiding the undesirable effects of spurious poles, 
zeros and mathematical artifacts generated by 



 

 

complex structures used in the Multiple Degree of 
Freedom MDOF estimators like PolyMAX or other 
Least Squares algorithms [5].  
 
To extract resonator parameters ωn , ηn and gn  of 
equation (3), it is necessary to add two extra 
auxiliary terms to the model ΔKn and ΔMn describing 
the effects of lower and upper neighboring modes 
acting on the window [2]: 
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The parameter vector Pv = {ωn ηn gn ΔKn ΔMn} is 
estimated minimizing the difference Eq between the 
real and imaginary part of the singular vector v1 and 
the expanded resonator qn

SVD: 
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After discarding the ΔKn and ΔMn parameters, the 
remaining parameters provide optimal estimates of 
the modal resonator Pq = {ωn ηn gn}. The error 
produced by discarding ΔKn and ΔMn is later 
compensated by the fine-tuning process which 
includes the effect of neighboring extracted modes.  

3.2.2 Improving Modal Interaction 

Since the resonator parameters are estimated within 
individual windows, in some cases, where the peak 
is highly damped or the participation of surrounding 
modes on the same window is strong, the estimated 
parameters deviate from the optimal values.  
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Figure 5. Fine tuning of modal parameters based on 
superposition of all modes 

To cope with this problem a final refinement of all 
parameters of all the modes is done after completing 
the initial extraction process, reducing the global 
error Egl between the measured displacement and the 
modal displacement Xmod composed by the 
superposition of the refined modes shown in Figure 
5. This process guarantees a minimum fitting error 
between the N extracted modes and the measured 
displacement   
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using the vector Pgl = {P1 Pq … PN}T comprising the 
modal parameters of all N extracted resonators. 
The global parameter vector Pgl is estimated by 
minimizing the error Egl using a gradient descent 
algorithm. After convergence, the fined tuned modal 
parameters are the optimal parameters producing the 
best agreement between the measured data and the 
modal model.  
The extracted mode shapes and fined tuned modal 
parameters are the target for the following FE 
simulation.  

4 Parameter Updating 
The detailed process to estimate the material 
parameters of the transducer components measured 
with a laser scanner on the surface is summarized in 
Figure 6.  
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Figure 6. Process of model updating for the 

parameter estimation of the scanned components 

The FEA model is built with the accurate geometry 
available at the design stage, the initial material 
parameters Young modulus Ec(f) and densities ρc of 
the transducer components. The components of the 
sound radiating surface which are accessible by an 
Laser sensor are numbered with sub index c = {1 2 .. 
Nc}.   
Each of the Laser Modes (Target Mode φT) is 
selected one by one and the eigenvalue analysis is 
performed by searching the eigenvalues which 
absolute value is the closest to the target resonance 
frequency ωT.  A matching routine detects, from the 
computed set, the eigenmode exhibiting maximum 
correlation with the measured mode shape (Tracking 
Mode) and uses this to modify the complex Young’s 
modulus systematically, maximizing the mode shape 



 

 

correlation using the Modal Assurance Criteria 
MACsurf [7] and minimizing the difference between 
the target and tracking resonance frequencies Δf.  
Once the maximum mode shape correlation is 
achieved and the frequency difference is sufficiently 
small, the next higher-order mode can be updated 
following the same procedure. When all dominant 
target modes are optimized, the complex Young’s 
modulus estimated at each resonance frequency 
represents the frequency dependent properties of the 
material.  

4.1  FE Simulation of the Piston Mode 

The full band response of the transducer  including 
the piston and the higher order modes requires a full 
solution of equation  for each frequency ω   

 2 ( ( )) ( ( )) ( )c ci E E       M R K X F  (12) 

The matrices M, R and K comprise the mass, 
frequency dependent damping and stiffness of the 
finite element model respectively. The state vector X 
denotes of the displacements and rotations of the 
mesh nodes and the force vector F is the mechanical 
force exerted by the voice coil on the structure. The 
FE analysis with forced excitation can be 
computationally expensive and time consuming for 
complex models. 

This method is used to verify the accuracy of the 
densities and the initial elasticity properties of the 
suspension parts (spider, surround), it is convenient 
to compare the mechanical Thiele-Small parameters 
of the FE model with the values measured on the 
real prototype. If the densities in the model are 
realistic, there should be a good agreement in the 
moving mass Mms. An agreement between the 
measured and simulated values of the mechanical 
stiffness Kms piston indicates that the geometry and 
the initial Young’s modulus of the suspension parts 
are correct.  Note that some differences can be found 
if the measurement is done in free air and no 
acoustic load is modeled with Finite Elements.     

4.2  FE Simulation of Higher-Order Modes 

Once the piston mode is correctly fitted, the mode 
shapes, natural frequencies and the damping of the 
higher-order modes in the FE simulation are 
calculated by Eigenvalue Analysis. This method 
solves the homogenous equation  

 1 2( ( ))c m mE    M K I Φ 0  (13) 

where Фm are the m mode shapes [10] and ωm are 
the complex eigenvalues corresponding to the 
squared resonance frequency. The real part of ωm is 
the natural frequency while the ratio between the 
imaginary and the real parts of the eigenvalues 

represents the modal loss factor. This analysis is 
much faster than solving the full dynamic problem 
with the forced excitation F on the right-hand side of 
equation . This is very convenient for the material 
parameter estimation where several iterations and 
gradient computations of the model are required. 
Since the stiffness matrix in equation  depends on 
the frequency, this constitutes nonlinear 
eigenproblem requiring a nonlinear eigenvalue 
solver [11] and [12] not easily available in most 
commercial FEA packages. A practical way to 
reduce the complexity of the problem is to solve  
searching for the eigenvalues closest to the target 
resonance frequencies ωT, extracted from the 
scanned prototype. Assuming that the material 
parameter Ec(ω) of the model is constant around the 
target frequency: 
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the stiffness matrix K depends on a constant value, 
the eigenvalue problem becomes linear and the 
mode shapes and resonance frequencies correspond 
to the material parameter value of each component 
Ec given at the particular target frequency ωT.  

4.2.1 Mode Matching 

 
From the set of the m computed modes, only the 
most correlated with the current target mode shape is 
retained and used to update the material parameters. 
This is the selected FEA mode ФFEA with resonance 
frequency ωFEA.     
If the material parameters Ec of the model tends to 
the effective value of the physical prototype Ec,eff, 
the FE mode shape ФFEA and resonance frequencies 
ωFEA get closer to the target mode shapes φT  and 
resonance frequencies ωT.  
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The idea is to find the effective material parameters 
of the prototype reducing the error between the 
simulated and measured modal basis, this process is 
detailed in the next section. 
 

4.2.2 Estimating Effective 
Parameters 

 
In the proposed approach, the parameter estimation 
of the updating components is achieved by means of 
the sensitivity method [12] based on the linearization 
of the generally non-linear relationship between the 
measurable outputs of the model and the input 
material parameters of the components Ec.  
 
The difference ε between the outputs of the FEA 
model μFEA={ωFEA ФFEA}T and the measured outputs 



 

 

μEXP={ωT ФT}T of the scanner vibration is 
represented as a truncated Taylor expansion after the 
linear term   

 EXP ( )FEA i i    ε μ μ E r S E E  (16) 

Where E = {E1 E2 … ENc}T is the vector containing 
the material parameters of the updating components, 
ri = μEXP - μFEA(Ei)  is the residual defined at the ith 
iteration and S is the sensitivity matrix 
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relating the changes of the model resonance 
frequency and mode shape with respect to each of 
the material parameters of the Nc components. Since 
the sensitivity matrix is computed at the current 
vector E=Ei and the difference ε is assumed to be 
small for these parameters, the correction factors to 
be applied to the parameters ΔE= E-Ei required to 
minimize residual in (16) can be computed with the 
pseudoinverse of the sensitivity matrix as 

1( )T T
i i

ΔE S WS S Wr  (18) 

Where the weighting matrix W is chosen 
accordingly to the deformation of the material 
component on the selected mode vibration. Then the 
material parameters for the next i+1 iteration are 
updated as 

1i i i  E E ΔE  (19) 

This process is repeated until the parameters 
converge to stable values. 

5 Case Study 
The proposed method is applied to midrange-woofer 
loudspeaker with three components to be updated. 

5.1  DUT Description 

The example loudspeaker is a 6-inch woofer which 
uses  a dust cap made of plastic, paper cone covered 
on the back by a fiber increasing considerably the 
bending stiffness and the surround is made of black 
rubber as seen in Figure 7   

  

Figure 7. Woofer prototype used for estimation of 
the dust cap, cone and surround material parameters 

The first step in the process is to extract the modal 
parameters as presented in section 3.2. 

5.2  Modal Parameters 

A fast scanner measurement consisting of 50 points 
distributed along a radial line on the surface 
produces the AAL shown in Figure 8.   
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Figure 8. Modal analysis of the scanner 
measurement, (dashed grey line) measured AAL, 
(solid black line) AAL of modal expansion and 

(solid grey lines) modal resonators. 

There are 9 modes 7 clearly dominant and 2 with 
lower energy seen on the AAL extracted as 
described in section  3.2. The modal resonators 
comprising the parameters in equation (3)  fit 
accurately the peaks and the modal expansion (2) is 
the optimal superposition describing the 
measurement using the 9 modes with the refinement 
of the modal parameters described in section 3.2.2. 
Note that the modal analysis reduces the complexity 
of the vibration to the superposition of few modes 
relevant for the acoustic performance and containing 
valuable information of the elasticity properties of 
the materials of the scanned components deformed 
on the mode shape.    
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Figure 9. Residual AAL after subtracting the modal 
expansion containing 9 modes (solid line) Measured 

AAL, (dashed line) Residual AAL  

The AAL of the residual displacement after 
subtracting the modal expansion including Figure 9 
shows the existence of other low energy modes and 
the measurement noise. These modes can be 
extracted continuing the iteration process shown in 
Figure 3.  In Table 2 the Modal parameters of the 9 
extracted modes are detailed. 
 

Mode fn=2πωn [Hz] Qn=1/2ηn |gn| [dB] Info 
0 127.4 3.14 133.5 Piston 
1 1999.6 11.5 132.4 1st  Breakup 



 

 

2 2346.2 7.18 120.3 Low energy 
3 5283.4 8.07 117.6 Low energy 
4 5671.5 11.16 131 2nd  Breakup 
5 8173.6 13.17 127.6 4th  Breakup 
6 9156.1 14.29 116.9 5th  Breakup 
7 11066.6 12.72 125.9 6th  Breakup 
8 13201.5 9.73 129.8 7th  Breakup 

Table 1. Modal parameters 

In this example the piston and the first two breakup 
modes are selected as targets to update the FE model 
and estimate the Young’s modulus of the dust-cap, 
cone and surround materials at these particular 
frequencies.    

5.3  Updated Modes 

The measured Target and the optimized FEA mode 
shapes of the three selected candidates for the 
optimization are shown in Figure 10.   
 
The values of the mechanical parameters in Table 2 
deviate less than 4% this indicates that the densities 
of the whole structure and the Young’s modulus of 
the suspension parts at the piston mode frequency 
127 Hz in the model are consistent with the built 
prototype.     

Parameter Measured FEA Difference [%] Unit 
Mms 5.78 5.99 -3.6 g 
Kms 3.78 3.84 -1.6 N/mm 
Rms 1.53 1.53 3.9 Kg/s 

Table 2. Mechanical Thiele-Small parameters   

For this transducer the next updated mode is the first 
breakup at 1999 Hz corresponding with highest peak 
found in the measured AAL. After optimizing the 
FEA model by adjusting the Youngs modulus of the 
difference between the resonance frequencies is less 
than 1 Hz and the mode shape correlation MACsurf is 
98%. Note in the center plot of Figure 10 the good 
agreement between the measurement and the 
optimized mode.      
 

Target 
Mode 

FT=2πωT 

[Hz] 
FFEA=2πωFEA 

[Hz] 
Δf 

[Hz] 
MACsurf 

[%] 
T0 127 127.2 -0.2 100 
T1 1999.6 1999.8 -0.16 98 
T2 5671.5 5677.6 -6.11 87 

Table 3. Summary of updated modes  

The last updated mode is the third peak found in the 
AAL at 5671 Hz its mode shape can be seen in the 
last plot of Figure 10. Note that the measured mode 
shape has some noise due to the small amplitude 
displacement of the high frequencies, this lead a 
correlation of 87% on the surface and a resonance 
frequency difference of 6.1 Hz. 
 

Piston Mode
fT(172 Hz)

fFEA(172.1 Hz)

Dustcap

Cone

Surround

Measured Target 
Mode Shape

FEA Mode 
Shape

First Breakup 
fT(1999.6 Hz)

fFEA(1999.8 Hz)

Second Breakup 
fT(5671.5 Hz)

fFEA(5677.5 Hz)

Measured Geometry 
(Surface)

FEA Geometry
(Complete Structure)

Spider vibration

Scanner Surface

 

Figure 10. Superposition of the measured Target ФT 
and the updated FEA ФFEA mode shapes  

From Figure 10 can be clearly seen that the 
estimated parameters produces the highest posible 
correlation on the surface which is the part of the 
mode shape that can be measured. Since the other 
componenst like the spider, voice coil and former 
are not scanned with a laser scanner, no Elasticity 
properties can be extracted usign the FEA model. 
The Young’s modulus of the three components used 
in the optimization are presented in section 6 Results 
and Discussion. 

5.4  Forced Response (Voice coil 
excitation) 

The eigenvalue analysis is fast and convenient to 
examine the global characteristic of the vibration but 
a forced analysis including the voice coil excitation 
is required to simulate real life conditions and apply 
design changes.     
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Figure 11. Mechanical response before and after 
Parameter Estimation. 

Figure 11 presents the purely mechanical response 
integrated on the surface of the measurement and the 
FE simulation. The electrical effects are removed as 
described in equation (1) eliminating the electrical 
damping and the high frequency inductance 
attenuation.  
 
The first simulation based on material parameters 
found in previews studies [14] presents a substantial 
difference with the measurement, the resonance 
peaks are shifted from the measured positions and 
the distance between adjacent resonances is too 
short. After updating the three modes, the model 
response fits more accurately the measurement 
specially on the resonance peaks which are placed at 
exact positions less than 6 Hz deviations and the 
distance between them agrees. The effective material 
parameters required to produce these results are 
frequency dependent and are described in the 
following section. 

6 Results and Discussion 
The optimal estimates of the material parameters 
obtained at the different target frequencies are 
linearly interpolated to generate values of the 
frequencies in between.  
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Figure 12. Young’s modulus E1(f) of the dustcap. 
(solid line) modelled value, (dashed lines) range of 

values producing 5% change of resonance frequency 

As seen from the mode shapes in Figure 10, the 
dustcap remains almost rigid on the full band used 
for the estimation. The real part of the Young’s 
modulus depicted in Figure 12, note that the dashed 
lines corresponding to the range of values that the 
parameter can take providing only 5% of changes on 
the resonance frequencies are wide. This information 
is derived from the sensitivity matrix (17) and means 
that the Young’s modulus of the dust cap cannot be 
accurately measured because the material is not 
deformed even at frequencies up to 5 kHz (third 
break-up mode). It is concluded that the dust-cap has 
no impact of the dynamic response of this driver.   
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Figure 13. Young’s modulus E2(f) of the Cone (solid 
line) modelled value, (dashed lines) range of values 

producing 5% change of resonance frequency 

The cone material used on this example loudspeaker 
is a composition of formed paper with a high 
bending stiffness, it explains the large plateau area 
between the piston mode and the first breakup. Not 
from the lack of sensitivity (dashed lines) that at the 
low frequencies the parameter cannot be uniquely 
defined because the cone is not deformed. After the 
first breakup the cone interacts with the surround 
and becomes more sensitive Figure 10. Note that the 
material behaviour is almost constant with respect to 
the frequency with some variations at high 
frequencies. 
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Figure 14. Young’s modulus E3(f) of the Surround 
(solid line) modelled value, (dashed lines) range of 

values producing 5% change of resonance frequency 
 
At the fundamental resonance of the driver (piston 
mode), the surround material is much more involved 
in the vibration and it makes the model very 
sensitive to it, note the dashed lies are very close to 
the parameter value. At high frequencies, the 
material gets harder as expected due to the 
viscoelastic characteristic of the rubber and its 
impact on the break modes reduces because the cone 
starts to dominate the vibration.   

7 Conclusions 
This paper proposed a methodology to estimate the 
elastic material parameters of the loudspeaker 
components based on the optimization of the modal 
basis the FE model providing more accurate 
simulations and optimal matching with the scanner 



 

 

measurements. The method exploits the fast-
computational performance of the eigenvalue 
analysis to extract the Youngs modulus of different 
components at the resonance frequencies of the built 
prototype. 
 
The optimization of the FE model is achieved by 
means of the inversion of the Sensitivity matrix 
which provides as well valuable information for the 
transducer design. For instance, the determination of 
the exact regions where each of the components 
participate or not on the global vibration provides 
the designer a better way to decide which 
components should be modified to tune determined 
mode. This has a deep implication on the design of 
full band loudspeakers which acoustical 
performance need to be optimized beyond the piston 
mode.     
 
A novel method to extract the modal parameters of 
laser scanner measurements based on Singular Value 
Decomposition and System identification techniques 
is presented. This method preserves the parallel pole 
structure meaningful for mechanical analysis of 
transducers, overcoming the problems of other 
techniques requiring zeros and higher amount of 
artificial modes to fit the measured data.  
 
The effectiveness of the method is shown with the 
case study of a 6-inch woofer which estimated 
effective parameters produce a good fitting on the 
full audio band.  
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