Measuring Telecommunication Drivers

Application Note to the KLIPPEL R&D SYSTEM

The Application Note is dedicated to particular properties of measuring micro-speakers, headphones and other actuators used in headsets, mobiles and other telecommunication devices. These drivers are designed to be operated over a wide frequency range with highest efficiency to save battery power. The small dimensions as well as low level state signals such as voltage or excursion require special measurement setups. Furthermore practical tips for mounting and recommended hardware components are given.

CONTENTS:

Particularities of telecommunication drivers	2
Preparations of the Measurements	4
Measurement of Small Signal Parameters (T/S)	4
Measurement of Effective Radiation Area Sp.	6
Measurement of Large Signal Parameters	7
Measurement of Large Signal Performance	. 10
Sound Pressure Frequency Response	. 12
Equivalent Harmonic Input Distortion	. 12
Impulsive Distortion (rub & buzz)	. 13
Mechanical Vibration and Radiation Analysis	. 15
Prediction of the Transfer Behavior	. 16
Auralization of Nonlinear Distortion	. 17
More Information	. 18

Document Revision 1.01

updated December 19, 2022

Klippel GmbH Mendelssohnallee 30 01309 Dresden, Germany

www.klippel.de info@klippel.de TEL: +49-351-251 35 35 FAX: +49-351-251 34 31

Particularities of telecommunication drivers

Typical applications	Telecommunication drivers are designed for broadband reproduction of sound in mobiles, headsets, telephones and free-speech devices. Since battery power is crucial in mobile systems, the efficiency must be as high as possible. Therefore the moving mass is usually very small, causing a high resonance frequency f_s . Most micro-speakers, headphones and microphones use no additional spider as suspension.
Filtering	The sound pressure level SPL decreases with 12 dB/octave below f_s if the voltage at the terminals is constant. An equalizer or electrical filter may be used to extend the useable bandwidth to lower frequencies and to realize a desired damping of the system. Higher displacement usually generates higher nonlinear distortion due to nonlinear force factor BI(x) and stiffness $K_{ms}(x)$ varying with displacement x.
Resonance Frequency	The resonance frequency f_s of micro-speakers is usually between 200 Hz and 4 kHz, typically about 800 Hz. Transducers used in Headphones may have a lower resonance frequency 50 … 1000 Hz.
Q-factors	In some micro-speakers the electrical damping is much smaller than the mechanical damping. A relatively small BI value gives a high value of the electrical loss factor Q_{es} and the high mechanical losses give a relatively low Q_{ms} value. To identify linear and nonlinear parameters properly the Q-factor ratio Q_{ms}/Q_{es} must be greater than about 0,1. For lower ratios than 0,1 the back-induced voltage around the resonance frequency is too small for identifying the driver parameter via the electrical input impedance.
Stiffness Nonlinearity	The suspension of the Microspeakers usually provide no reliable mechanical protection of the voice coil at high amplitudes as provided by a spider in a woofer. The geometry of the suspension may also cause a significant asymmetry in the stiffness characteristic $K_{ms}(x)$ which may produce a dc displacement (rectification of the ac signal).
Thermal Parameters	The thermal dynamics of microspeakers can be modeled by an equivalent circuit as presented in [4]. Contrary to woofers a very short times is required for heating up and cooling down the tiny voice coil in microspeakers. The thermal time constants of the voice coil τ_{tv} usually less than 1 s and the time constant of the magnet and frame τ_{tv} is usually not much more than few minutes. If the microspeaker is operated in free air the thermal resistance R_{tv} between coil and magnet is usually smaller than the resistance R_{tm} between magnet and ambience. Thus the power handling of a microspeaker can significantly be improved if the magnet or frame of the microspeaker is mounted on metal or other material with good thermal conductivity. The forced air convection cooling is much less effective than in woofers. The direct heat transfer due to eddy currents which heat the pole tips directly is also negligible.
Creep effect	The suspension system exposed to a sustained constant force will show a slow increase of the displacement versus time (creep effect, see [1]). Due to visco-elastic effects in the material the stiffness of the suspension is not constant but becomes smaller at lower frequencies.
	Most telecommunication drivers show substantial creep. Loosing 50% of the stiffness at very low frequencies related to the stiffness at f_s is quite normal. High creep factor may affect the accuracy of the identified mechanical parameters because the measured impedance is higher for $f < f_s$ than predicted by conventional lumped parameter models. The creep model implemented in the LPM can partly compensate for this effect and gives a better agreement between model and real transducer. It is recommended to check the fitting of the transfer function $H_x(f)$ between voltage and displacement and the fitting of the electrical impedance.
	While the visco-elastic effect in woofers is mainly caused by the fiber structure and the impregnation of the spider and surround the creep factor in microspeakers can also be caused by the air flow in the cavities below the diaphragm behaving like a vented system.
	The lack of DC stiffness result in an higher DC displacement produced by a given asymmetrical nonlinearity ($BI(x)$, $Cms(x)$) of the driver. The DC displacement shifts the coil away from the rest position and can increase harmonic and intermodulation distortion.

Telecommunication drivers

Air load	The air causes some additional losses, behaves as an additional air spring and increases the total mass. This effect depends on the measurement condition (vacuum, free air, coupler). A microspeaker measured in free air, mounted on a coupler or measured in vacuum gives different values of moving mass M_{ms} , mechanical resistance R_{ms} and compliance C_{ms} .	
	Since the mechanical loss factor Q_{ms} dominates the tota in the mechanical system and by the air have a significal behavior. The resistance $R_{ms}(x,v)$ also depends on displ may produce some nonlinear distortion. While the depen- caused by the mechanical system, the dependency $R_m(v)$ caused by turbulent air flow. Note the large signal identifi- woofer) assume a constant resistance R_{ms} and only the and micro-speakers (LSI Tweeter) takes the dependency	I loss factor Q_{ts} , the losses caused nt influence on the total transfer accement the x and velocity v and idency of $R_m(x)$ versus x is mainly v) versus velocity v is mainly fication module for woofers (LSI module designated for tweeters y $R_{ms}(v)$ into account.
	The influence of the mass of the moving air is not neglig diaphragm and the coil is relatively small.	ible because the mass of the
	The additional stiffness caused by an air volume in a tes below the diaphragm depends on the effective volume a which may deviate from the projected area.	t enclosure (coupler) or in cavities nd the effective radiation area $S_{\mbox{\scriptsize D}}$
Measurement in Vacuum		A measurement of the micro- speakers in vacuum makes it possible to suppress the effect of the air load and to measure the mechanical properties of the micro-speaker more precisely. Klippel provides a vacuum measurement kit [23] which provides the electrical stimulus to the speaker and gives access to the laser sensor.
Effective Radiation area	Most micro-speakers use the rim zone of the diaphragm as the suspension. This area is relatively large and there is a gradual transfer from fixed clamping at the outside rim to the point where the coil is attached. Thus the effective radiation area S_D does not correspond with the projected area of the diaphragm.	
Inductance	Ideal Inductance (contributing to the imaginary part) and losses due to eddy currents (contributing to the real part) increase the electrical impedance at higher frequency above resonance frequency f_s . In micro-speakers is the inductance usually very small and the para-inductance (the lossy part due to eddy currents) is negligible. The nonlinear variation of the voice coil inductance versus displacement x and current i is also negligible.	
Optical properties of the diaphragm	The surface of the diaphragms used in micro-speakers in Laser measurements of the voice coil displacement requ surface by applying ink (less recommended) or a light po for mechanical crack finding).	s usually shiny or transparent. uire additional coating of the ower sprayed on the surface (used
Break up modes	The first bending modes which break up on the diaphrag modes followed by radial modes at very high frequencies	m are usually circumferential s. More details see [6]
Rocking modes	Micro-speakers use a single suspension (no spider) and recommended to measure the mechanical cone vibration the results to get a meaningful average value for the void	are prone to rocking modes. It is n at multiple points and average ce coil displacement.

Preparations of the Measurements

Requirements	The following hardware and software is required: - Distortion Analyzer Rev. 1.2 or higher (sensitive Channel 2) - Laser stand or Laser Scanning Hardware - High resolution Laser Sensor (H52), Microphone - Software modules (LPM, LSI, DIS, TRF-Pro, dB-Lab, SCN, SIM, AUR)
General Setup	 Attach the driver in a fixture such a coupler, or a clamp. Plaster (easy to dismount) or double sided adhesive tape (difficult to dismount) are less recommended. Pay attention that you don't close any holes at the rear side of the micro-speaker.
	 Use high sensitive Speaker Channel 2 (for DA 1.2 and higher) for LPM, LSI, TRF, DIS, SCN measurements.
	 Solder short wires to the terminals since the clamps provided with the Analyzer are too big and too heavy for direct fastening.
	 Pay attention to the heating of the voice coil. Averaging (LPM) or additional excitation time (DIS) may heat the voice coil and increase the voice coil resistance considerably.
	 Place the microphone in the near-field of the driver for acoustical measurements. For small drivers it may be required to remove the laser sensor to adjust the microphone just on axis to the driver.
	 Create a new object using the object template setup DIAGNOSTICS MCROSPEAKER SP1 as provided by KLIPPEL.
	- The excitation level should be adjusted according to the mechanical capabilities of the driver under test (for LSI and DIS). Find mechanical limits with the TRF-Pro rub& buzz detection. Read peak to peak displacement and ensure that in the large signal tests (LSI, DIS) this range is not exceeded.

Measurement of Small Signal Parameters (T/S)

using Linear Parameter Measurement Module (LPM)

Diagnostic value for microspeakers	The small signal parameters describe the transfer behavior of the micro-speaker at low amplitudes. Voice coil dc resistance R _e and force factor Bl(x=0) at the rest position x=0 give the driving force for a given voltage applied to the terminals. The stiffness K _{ms} (x=0) at the rest position x=0 determines the displacement for low frequencies (f <f<sub>s) while the moving mass M_{ms} for high frequencies (f>f_s). At the resonance frequency f_s the electrical loss-factor Q_{es} and the mechanical loss factor Q_{ms} determine the total Q factor and the shape of the resonance curve.</f<sub>
Optimal Method	The Linear Parameter Measurement (LPM) provides alternative methods for measuring micro-speakers:
	Single step measurement (Impedance + displacement by laser):
	This technique is recommended for micro-speakers because it can be applied to micro- speakers mounted on couplers, operated in free air and in vacuum.
	Two-step measurement with enclosure perturbation (impedance):
	This technique requires precise values of the effective radiation area S_D and of the air volume of the test enclosure. It is recommend to use a differential technique and to generate a defined variation of the air volume by using a medical injection pump. The accurate measurement of the effective radiation area S_D also requires a laser sensor (see application note [7])
	Two-step measurement with added mass perturbation (Impedance):
	This technique is usually not applicable to micro-speakers.

Optimal Setup	Use the object template "Diagnostics MICROSPEAKER Sp2" containing the operation "1 LPM Small signal parameter".
	Ensure that the maximal frequency F_{max} is set to 6 kHz. Activate the noise floor measurement and adjust the voltage (50 mV). Activate on property page INPUT the routing to speaker 2.
	This selection of an optimal inductance model (on property page IMPORT/EXPORT of LPM) is not critical.
Laser usage	Optical measurements with triangulation lasers give very accurate results if the following points are considered:
	Use a high resolution, high bandwidth laser
	The recommended H52 laser has an upper frequency > 10 kHz and a good SNR ratio.
	Laser Calibration:
	A laser check (see manual) should be performed to ensure that the laser is properly calibrated.
	Remove the grill
	The grill, cloth or any kind of cover on the diaphragm has to be removed to give the laser access to the diaphragm. This "operation" may change the properties of the device under test if the mechanical system or the acoustical load is changed. It is recommended to measure the linear parameters before and after grill removal and to check for a significant parameter shift.
	Diffuse Target surface :
	Triangulation lasers might produce errors in the measured displacement if the target surface is transparent or highly reflective. Analogue laser sensors might produce a smaller output which results in a higher BI value. Digital laser sensors might produce distortion in the laser output (drop outs) and large variation in the BI value. White coating of the surface is strongly recommended to get a diffuse reflection. A simple and good way is to use white spray which is used for finding cracks in materials. White correction fluid is not

To prevent any error due to additional mass, it is recommended to measure the resonance frequency before and after painting. If no shift is measurable, the influence on the measurement due to the additional mass is negligible. If a shift of the resonance frequency is found, the additional mass may subtracted from the total mass.

Average laser measurements

recommended. Use a minimum of paint!

Measure the vibration of multiple points on the diaphragm and average the results to compensate for rocking modes and optical errors. An automatic averaging can be realized by Laser scanning vibrometry [6].

Consider the glass plate in vacuum measurements

A triangulation laser can be used to measure the voice coil displacement while the microspeaker is operated in vacuum. Note that the calibration factor used for a measurement in free air cannot be applied. A separate laser calibration is required if a glass plate is used between target and laser sensor.

Measurement of Effective Radiation Area SD

using application note [7]

Diagnostic value	The effective radiation area S_D is required for predicting the sound pressure output for a
for micro- speakers	given voice coil displacement. Thus the sensitivity and the maximal output can only be calculated precisely if the parameter S_{D} is correct.

Telecommunication drivers

AN 24

Optimal Method

The effective radiation area S_D can be determined by mounting the transducer to an enclosure with variable size (medical injection pump) and measuring the sound pressure in the enclosure as well as the displacement of the voice coil by using a laser triangulation sensor. A differential method as implemented in a special MAT module provided by KLIPPEL can be used to calculate the S_D value.

Measurement of Large Signal Parameters

using Large Signal Identification Module (LSI)

Diagnostic value for micro- speakers	The force factor Bl(x) and stiffness $K_{ms}(x)$ are important large signal parameters for micro- speaker. They show the physical cause of the dominant harmonic and intermodulation distortion (more details in the tutorial [2]) BL(x) nonlinearity: The ratio between voice coil height and gap depth determines the	
	symmetrical decay of the $Bl(x)$ curve for positive and negative displacement. An asymmetry of the $Bl(x)$ curve may be caused by an asymmetrical B field in the magnetic gap and an offset in the rest position of the coil.	
	$K_{ms}(x)$ nonlinearity: High positive or negative excursion causes a deformation of the corrugation roll in the suspension (which is in micro-speakers part of the diaphragm). This causes a symmetrical increase of the stiffness. An asymmetrical shape of the $K_{ms}(x)$ is mainly caused by an asymmetrical geometry of the corrugation roll.	
	Thermal Parameters : The ratio between thermal resistance R_{tv} and R_{tm} reveals the bottleneck in the heat transfer.	
Selection of the optimal module	The resonance frequency f_s must be lower than 400 Hz to perform a large signal identification using LSI Woofer. The LSI Tweeter can measure micro-speakers with a higher resonance frequency (100 Hz < f_s < 2 kHz) but the measurement time is much longer.	
	NOTE: The LSI modules in the R&D system are relatively slow measurement of the nonlinear parameters. Single-valued large signal parameters such as	
	 voice coil position in mm stiffness asymmetry in percent maximal peak displacement X_{BI} limited by force factor BI(x) maximal peak displacement X_C limited by compliance and the maximal peak displacement limits X_{BI} 	
	can be measured in less than a seconds by the Motor and Suspension Check (MSC) of the QC System [22].	

Preparing a measurement	Use the object template "Diagnostics MICROSPEAKER Sp2" containing the operation "2 LSI Nonlin. Parameter only".
	Reduce initial excitation level. Set the external Power Amplifier gain to about 6-20 dB and the internal gain for small signal parameters G_{small} to -20 dB on the Property Page Protection within the LSI module. This ensures that the small drivers are operated in the safe, linear domain at the beginning of the Large signal Identification (LSI).
	In case the error "Minimal output gain" pops up, reduce the power amplifier gain.
	Limit input power for protection . Telecommunication driver have not a suspension and a motor structure which provides natural protection against mechanical overload and damage. The BI_{min} and C_{min} parameters are not suited for input power limiting. Voice coil rubbing and hard limiting may damage the speaker before the regular nonlinearities (Bl(x) and $C_{ms}(x)$ will limit the excursion. Set the Protection Parameter P_{lim} at the Property Page Protection to 0.05 W or lower. If the final drive level is too small, increase P_{lim} step by step.
	Select the SPEAKER 2 terminal. The Distortion Analyzer provides on SPEAKER 2 a more sensitive current sensor which is required for measuring micro-speakers.
	Use Stimulus with sufficient bandwidth. The identification of the nonlinear parameters require a noise signal exciting the micro-speaker below and above resonance frequency f_s . Switch on the automatic noise button on Property Page "Generator" to use a stimulus with properties optimal for the speaker.
	Operate the micro-speaker in vacuum to reduce the influence of the acoustical load.
	Mount the micro-speaker on a small stand and adjust the Laser to the diaphragm . The laser is not required for the identification of the linear and nonlinear parameters but is very useful to check the polarity of the micro-speaker. Note the polarity of the speaker and the way how the SPEAKER cable is connected to the terminals of the micro-speaker because the orientation will determine the orientation of the nonlinear curves. If the cables are connected correctly then a label COIL IN will be plotted at negative displacement.
Performing the measurement	Start the LSI measurement.
	Check the identified resonance frequency after finishing the LINEAR MODE. IF the resonance frequency is significantly different from the resonance frequency found in LPM then repeat the measurement with increased initial excitation level.
	Wait until the adaptive algorithm is converged to the optimal parameters. Select at least 5 min in the NONLINEAR MODE on the property Page CONDITION for LSI Woofer (20 min for LSI TWEETER).
	Listen to rub and buzz . If you hear impulsive distortion during LSI measurement then reduce the limit value MAXIMAL INPUT POWER P _{lim} on the property page PROTECTION. The system will go back to the enlargement mode and will reduce the amplitude of the stimulus automatically.
	Import the value BI(x=0) at rest position x=0 . Export all parameters of the Linear Parameter Measurement LPM to the clipboard on Property Page IMPORT/EXPORT and import those values on property page IM/EXPORT of the LSI. The imported BI value is much more precise than the BI value determined by the laser in the LSI.
Accuracy of the measurement	Open the result window BI(x) and check that the COIL IN position is printed at negative displacement.
	Open the result window STATE and check the fitting error ei(t) which should be below 15 %. If the error is higher the assumed model does not fit with the real micro-speaker. Remedy: Perform the measurement in vacuum to reduce the influence of the acoustical load. Use the current sensor at Speaker 2 to ensure high SNR.

Measurement of Large Signal Performance

using 3D Distortion Module (DIS)

Diagnostic value for micro- speakers	The 3D Distortion Measurement module (DI signal performance of micro-speakers by pe single tone or two-tone stimulus. This meas structure and suspension. The following cha	IS) is a perfect tool for assessing the large erforming a steady-state measurement with a urement reveals problems caused by motor aracteristics are useful:
	 Peak displacement versus frequent 	ncy and voltage [17]
	 Nonlinear and thermal compressio Displacement versus varying input 	n of the fundamental amplitude in SPL and voltage[16]
	 dc displacement due to nonlinear r 	ectification processes [17]
	 intermodulation distortion in sound 	pressure output [13]
	 harmonic distortion versus voltage 	and frequency [14]
	Temperature protection . All DIS measurer temperature protection. Enable the Temperature and set the temperature limit according to y octaves away from the resonance frequency is good for f_s <900 Hz. For f_s >900 Hz use a	ments should be performed with automatic ature Monitoring at Property Page Protection our driver. Select the monitor tone at least two $y f_s$. The default value is set to 2250 Hz which test tone of 375 Hz
Displacement	Use the template operation 5 DIS X FUND/ MICROSPEAKER Sp2 . Set the starting free 10 f_s of the single-tone stimulus and the m the voice coil.	AMENTAL, Xdc in the template Diagnostics equency f _{start} = 0.1 f _s and end frequency f _{end} = aximal voltage U _{end} . Adjust the laser sensor to
	Open result window " Fundamental " to see frequency and voltage. The change of the refactor Q_{ts} caused by nonlinearities and visco	the rms value of the displacement versus esonance peak reveals the changing total loss p-elastic effects.
	Open the result window " Peak – Bottom " to displacement versus frequency and voltage displacement which may be produced by re $BI(x)$ and $K_{ms}(x)$.	o see the positive and negative peak . This window also shows a dc in the ctification of the ac signal by asymmetries in
	Open the result window "DC displacement fundamental component. A high dc compon which increases the intermodulation distortic coil displacement (See below TRF measure	to see the dc component separated from the ent causes a dynamic shift of the voice coil on and may cause hard limiting of the voice ement of impulsive distortion).
	Open the result window "Compression" to component due to nonlinear and thermal eff referred to the measurement at the lowest v no amplitude compression in the loudspeak	see the compression of the fundamental fects. All curves measured at high voltages are voltage U _{start} . If all curve are identical there is er.
Example	Second-order harmonic distortion in percent (dh2) _{Signal at IN1}	Third-order harmonic distortion in percent (dh3)
microspeaker	0.00 0.20 0.40 0.80	Signal at IV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	The asymmetry in the stiffness curve $K_{ms}(x)$ generates cause most of second order distortion below the resonance frequency.	by the symmetrical decay of BI(x) and symmetrical increase of $K_{ms}(x)$. Suddenly at 0.8V the 3rd order distortion comes up due a hard limiting effect of the $K_{ms}(x)$.

Harmonics Harmonic distortion are measured versus voltage and frequency in the sound pressure output by using the results of 6 DIS IMD bass sweep and 6 DIS IMD voice sweep. Open the result window "Harmonics, %" to see the 2nd harmonic and 3rd harmonic of frequency f_1 varied versus frequency $f_{start} < f_1 < f_{end}$ at maximal voltage U_{end} Open the result window "Total Harmonics, %" to see the THD of frequency f1 varied versus frequency $f_{start} < f_1 < f_{end}$ and voltage. Open the result window "2nd Harmonic, %" to see the 2nd order distortion related to the total output of frequency f_1 varied versus frequency $f_{\text{start}} < f_1 < f_{\text{end}}$ and voltage. Open the result window "3rd Harmonic, %" to see the 3rd order distortion related to the total output of frequency f_1 varied versus frequency $f_{start} < f_1 < f_{end}$ and voltage. Fundamental component DC component Example **Microspeaker** 0.20 V 0.40 V 0.40 V 0.60 \ 0.20 V 0.60 \ 0,25 -0.005 0,20 -0,010 (s) E 0,15 -0.015 Ĩ [표] × 0,10 -0.020 0,05 -0.025 0.00 2*102 6*10² 8*102 2*10 4*10 Frequencyf1 [Hz] 4*10 Frequencyf1 [Hz] The measured DC part is generated by the The fundamental of the excursion shows asymmetry in the stiffness curve $K_{ms}(x)$. This the typical roll off of 12 dB / octave DC part shifts the working point dynamically above f_s . Compression effects are hardly to negative displacement where the stiffness detectable. See also the Compression window in DIS. is lower. Intermodulation distortion are measured versus voltage and frequency in the sound Intermodulation pressure output by using the template 6 DIS IMD bass sweep and 6 DIS IMD voice sweep. Select the mode "harmonic + intermodulations (f2) to evaluate the intermodulation about f2. The 6 DIS IMD bass sweep keeps the higher frequency f2 constant at f₂= 5 f_s while the lower frequency component (bass tone) is varied versus frequency $f_s/10 < f_1 < f_s$. Select The alternative measurement 6 DIS IMD voice sweep keeps the lower frequency f2 constant at f₂= 0.1 f_s while the higher frequency component (bass tone) is varied versus frequency $f_s/10 < f_1 < f_s$. Select the mode "harmonic + intermodulations (f1) to evaluate the intermodulation about f1. Open the result window "2nd Intermod, %" to see the 2nd order intermodulation versus frequency $_{start} < f_1 < f_{end}$ at various amplitudes. Open the result window "3rd Intermod, %" to see the 3rd order intermodulation versus frequency $_{start} < f_1 < f_{end}$ at various amplitudes. Intermodulation measurements provide unique symptoms for identifying BI nonlinearity. Please find more to loudspeaker diagnostics in the in the paper "Loudspeaker

Nonlinearities – Cause, Parameter, Symptoms" [2]

Sound Pressure Frequency Response

using Transfer Function Module (TRF)

Diagnostic value for microspeakers	The TRF module is a convenient tool for measuring the linear transfer function, applying windowing to the impulse response and providing amplitude and phase response of the fundamental.
	Nonlinear distortion and ambient noise may corrupt the measurement of the linear transfer function. The TRF module provides means for checking the operation in small signal domain where the nonlinearities can be neglected and a sufficient signal to noise ratio (SNR) can be realized.
Performing a measurement	Use the operation template 3 TRF SPL + harmonics in object "Diagnost. Rub & Buzz Sp2" which uses the SPEAKER 2 connector. Enter the maximal voltage generated at the terminals of the speaker. Use shaping of the stimulus to avoid high peak displacement at low frequencies or to realize an optimal SNR.
	Select on property page "Processing" and select Half Hanning for windowing the impulse response. Use the time cursor in result window "Impulse Response" to gate the meaningful impulse response without room reflection.
	Open the result window "H(f) Magnitude" to see the amplitude response.
	Select on property page "Display" the checkbox "Show phase without time delay" and open result window "H(f) Phase".
Low Noise ?	Noise from ambience or generated by the microphone may corrupt the measurement.
	 Activate "Noise floor + dc monitoring" in property page Stimulus" before doing the measurement
	 Open the result window "Y(f) Spectrum" to compare the noise floor with the fundamental components and to see the SNR for each frequency
Low Distortion ?	The TRF module provides always the 2 nd -,3 rd - and higher-order distortion in the measured signals by exploiting properties of the sinusoidal sweep with logarithmic sweep speed.
	To see the harmonics open the property page "Processing" and select under "Transfer function" stimulus "STIM" as denominator. Ensure that the harmonic distortion are sufficiently low when measuring the linear amplitude and phase response.
	Open the result window "Fundamental + Harmonics" to find the low-order harmonic distortion and the THD on an absolute scale in dB.
	Open the result window "Harmonic Distortion" to see relative distortion measures referred to the fundamental response in percent and dB depending on the setup selected on property page "DISPLAY".

Equivalent Harmonic Input Distortion

using the Transfer Function Module (TRF)

Diagnostic value for microspeakers
Harmonic distortion measured in the sound pressure output signal reveals not only the nonlinear properties of the loudspeaker but also the acoustical properties of the acoustical environment. Those acoustical properties cause a linear filtering (post-shaping) of the nonlinear distortion generated in the motor structure and diaphragm of the micro-speaker. This effect can be removed by a applying an inverse filtering of the harmonic distortion with the fundamental response and provides the equivalent input distortion (see AES paper [3]).
The equivalent input distortion is independent on the linear properties of the microphone, the position of the microphone, and diffraction and reflection of the sound wave at the baffle.

How to do it ? After windowing the linear impulse response properly (see above) open the result window Fundamental + Harmonics and copy the curve "Fundamental" into the clipboard. Open the property page Processing and export the curve into "Reference". The reference curve is applied as an inverse filter prior to the spectral analysis giving a almost flat fundamental response and the equivalent harmonic input distortion. Find more practical tips in application note [19]

Impulsive Distortion (rub & buzz)

using the Transfer Function Module (TRF)

Diagnostic value for microspeakers	The regular nonlinearities such as force factor Bl(X) and nonlinear stiffness $K_{ms}(x)$ of the suspension produce low order harmonic and intermodulation distortion. Other defects in the micro-speakers such as hard limiting of the coil at the grill, voice coil rubbing, buzzing mechanical components, loose particles produce impulsive distortion which are audible and have a high impact on perceived sound quality. Performing a spectral analysis we find many high order components (20200) which have very low energy. Conventional measurements of THD or assessing the amplitude of the higher-order components gives a low signal to noise ratio. It is more advantages to measure the impulsive distortion in the time domain. Here both amplitude and phase information are exploited and all higher-components generate an impulse in the time domain. Impulsive distortion have a higher (2[15].
Measurement	Create a new measurement object based on the template "Diagnost. Rub & Buzz Sp 2". This object contains a series of TRF operations for impulsive distortion measurements where the voltage is increased by 0.1 V steps from 0.1 V to 1 V automatically . Ensure that the maximal voltage is permissible for the micro-speaker under test. Select the object and press the start button. All operations are processed sequentially. If you hear significant rub and buzz distortion you may cancel the measurement at any time.
	Alternatively you may start the operation "0 TRF Crest factor harmonics" in the object Diagnost. RUB & BUZZ Sp2. This is a measurement repeated manually . Starting at low levels the excitation is increased (not more than 20% per step) until suddenly peaky distortion show up, characterizing the mechanical limiting of the suspension (such as flapping, hitting). Usually these disturbances are also audible quite well.
	Select on property page "I-DIST" the mode "Rub &Buzz (Order 20) "to consider the higher- order distortion components (order > 20).
Peak Value	The peak value of the impulsive distortion is a powerful measure for quantitative assessment on an absolute scale. A limit curve may be applied to derive a PASS/FAIL decision.
	Select any operation "PHD (peak)" in the automatic batch of object "Diagnost. Rub & Buzz Sp2" and open the result window "Instantaneous Distortion". You see peak value measured in the time domain of the higher order distortion (order > 20).
	To display the peak value in the manual measurement "0 TRF Crest factor harmonics" select the property page "I-DIST" and select the measure "PHD".
Crest Factor	The crest factor of the impulsive distortion is a good measure for finding impulsive distortion. It is the ratio of peak value to rms value of the impulsive distortion. Regular distortion from $BI(x)$ and $K_{ms}(x)$ have a low crest factor below 12 dB but rub and buzz defects exceed this limit.
	Select any operation "IHCD" in the automatic batch of object "Diagnost. Rub & Buzz Sp2" or select the manual measurement "0 TRF Crest factor harmonics". Select the measure "CHD" on property page "I-DIST" and open the result window "Instantaneous Distortion".
	If the crest factor is higher than 12 dB impulsive distortion are generated at the particular frequency.

Mechanical Vibration and Radiation Analysis

using the KLIPPEL Scanning Vibrometry (SCN)

Diagnostic value for micro- speakers	Scanning the diaphragm and measuring the disp mechanical vibration. Axial-symmetrical modes in generating the sound pressure output on-axis an diaphragm. The contribution of the circumferenti cancellation effects. However, low-order circumfer movement and a rubbing of the coil in the gap pr more critical in micro-speakers because the sing an unbalanced mass or additional force caused to Prediction of the circumferential modes by FEA a are not known.	lacement directly shows modes of the n radial direction are responsible for d to the total sound power radiated by the al modes is less due to acoustical erential modes may cause a rocking oducing impulsive distortion. This is much le suspension system is relative flat and by the wires may initiate this mode. are difficult because the input parameters
Measurement Procedure	The complete scanning of the diaphragm requires the same preparation of the target surface as discussed in the context of linear and nonlinear parameter measurement. Scanning of sufficient points (50) on the diaphragm can be accomplished in few minutes [6]. It is recommended to perform a scan in free air and in vacuum to separate the influence of the mechanics and the air load.	
Example Micro- speaker	Cross-sectional view of the geometry (dotted line) and superimposed vibration (solid line) of a rocking mode	3D view of the geometry and superimposed vibration (blue and red indicates opposite directions) of a rocking mode

The geometry and vibration data measured by laser scanning are valuable parameters of the micro-speakers in addition to linear and nonlinear parameters. They are the basis for predicting the sound pressure output at any point in the far field as shown as black solid line (**Total SPL**) in the figure above.

An vibration and radiation analysis [6] may reveal additional components which are the basis for deeper diagnostic:

Total Acceleration level describes the sound pressure potential without any acoustical cancellation effects. This measure is the basis for a modal analysis and reveals Natural Frequencies and modal loss factors which may be used to estimate the material parameters required by Finite Element Analysis.

Peaks in the **Quadrature Acceleration** (green curve) may indicate high circumferential modes. The peak at 1.5 kHz is caused a rocking mode.

The **Anti-phase Component** (blue curve) evaluates the acoustical cancellation effect. IF the Total SPL is more than 15 dB higher than the anti-phase component the in-phase component is always dominant and the acoustical cancellation can be neglected.

Prediction of the Transfer Behavior

using the KLIPPEL Simulation Module (SIM)

Diagnostic value for micro- speakers	The small signal and large signal behavior of the micro-speaker can be predicted on the basis of linear, nonlinear and thermal parameters of electro-acoustical model. The SIM-module is a twin of the DIS module supporting a direct comparison of measured and predicted performance [18]. A good agreement verifies the lumped or distributed parameters measured or predicted by FEA. In addition to this the influence of each nonlinearity can be investigated in detail and new design choices can be evaluated. The SIM modules considers an electrical pre-filter or and acoustical post filter and the influence various types of enclosures and acoustical loads and is a powerful tool for system design.
<i>How to do a prediction ?</i>	Create a new SIM operation based on a SIM template which corresponds with the DIS module (for example "SIM X Fundamental, DC")
	Import the large signal parameters on property page IM/Export from the LSI large signal identification.
	Import the setup parameter from the corresponding DIS module (for example "DIS X Fundamental, DC ")
	Select "Driver in Baffle" on property page "System" or specify the enclosure used.
	Start the SIM module.
	Select the state signal of interest (displacement, sound pressure, temperature) on property page DISPLAY.

Auralization of Nonlinear Distortion

using the KLIPPEL Simulation Module (SIM)

Diagnostic value for micro- speakers	The auralization module makes it possible to separate the nonlinear distortion from the linear signal for any test or audio signal provided to the analogue input of the Distortion Analyzer. A mixing console may be used to synthesize a defined ratio between distortion and linear signal as a stimulus for systematic listening tests. At the same time the internal state information in the micro-speaker (displacement, distortion values, temperature) are recorded during the session. Thus this technique combines objective and subjective evaluation of micro-speakers and is the basis for checking the audibility of each distortion component and their impact on perceived sound quality.
<i>How to do an auralization ?</i>	Create a new AUR operation and import the large signal parameters (in digital format) from the LSI operation. Select the crossover frequency. Start the AUR and apply an external stimulus. Adjust the level of the input signal to use the working range where the micro-speaker should be evaluated. Adjust the level of the output level to reproduce the signal at a loudness is comfortable for the listener. Use the A/B switch to realize a blind comparison between a distorted and a non-distorted reproduction.

More Information		
Papers	[1] Knudsen, M. H. and Jensen, J. G. <i>Low-frequency loudspeaker models that include suspension creep.</i> J. Audio Eng. Soc., Vol. 41, No. 1 / 2, 1993	
	[2] W. Klippel, Tutorial: Loudspeaker Nonlinearities - Causes, Parameters, Symptoms <i>J. Audio Eng. Society</i> 54 , No. 10 pp. 907-939 (2006 Oct.).	
	[3] W. Klippel, "Equivalent Input Distortion," <i>J. Audio Eng. Society</i> 52 , No. 9 pp. 931-947 (2004 Sept.).	
	[4] W. Klippel, "Nonlinear Modeling of the Heat Transfer in Loudspeakers," <i>J. Audio Eng. Society</i> 52 , erscheint Heft 1, 2004 January.	
	[5] W. Klippel, J. Schlechter, "Measurement and Vizualisation of Loudspeaker Cone Vibration" preprint #6882, presented at the 125th Convention of the Audio Engineering Society, 2006 October 7 – 10, New York, USA.	
	[6] W. Klippel, J. Schlechter, Distributed Mechanical Parameters Describing Vibration and Sound Radiation of Loudspeaker Drive Units, preprint presented at the 125th Convention of the Audio Engineering Society, 2008 October 2–5San Francisco, CA, USA	
Application Notes	Find under www.klippel.de further application notes related to this subject	
	[7] AN32 - Effective Radiation Area S₀	
	[8] AN25 - Maximizing LPM Accuracy,	
	[9] AN1 – Optical voice coil Posiition	
	[10] AN4 – Measurement of Peak Displacement X _{max}	
	[11] AN5 – Displacement Limits due to Driver Nonlinearities	
	[12] AN19 – Measurement of Nonlinear Thermal Parameters	
	[13] AN08 - 3D Intermodulation of speakers	
	[14] AN09 - 3D Harmonic Distortion Measurement	
	[15] AN22 - R&B Detection without Golden Unit	
	[16] AN12 - Causes for Amplitude Compression	
	[17] AN15 - Dynamic Generation of DC Displacement	
	[18] AN17 - Credibility of Nonlinear Parameter Measurement	
	[19] AN20 – Measurement of Equivalent Input Distortion	
	[20] AN21 – Reduce distortion by shifting Voice Coil	
	[21] AN31 – Cone Vibration and Radiation Diagnostics	
Specification	[22] Motor und Suspension Check (MSC) S13,, software module of the KLIPPEL QC System	
	[23] Vacuum Measurement Kit A7, hardware accessory of the KLIPPEL R&D System,	
Software	User Manual for the KLIPPEL R&D SYSTEM.	

Klippel GmbH Mendelssohnallee 30 01309 Dresden, Germany updated December 19, 2022

www.klippel.de info@klippel.de TEL: +49-351-251 35 35 FAX: +49-351-251 34 31