# Dynamic Generation of DC Displacement AN13 Application Note to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.1) Nonlinearities inherent in the transducer produce a DC component in the voice coil displacement by rectifying the AC signal. Magnitude and direction of the dynamically generated DC component depend on the type of nonlinearity and on the frequency and voltage of the excitation signal. The DIS module (3D distortion measurement) is used to measure the DC component versus voltage and frequency. The results reveal the stability of the driver, the cause of distortion and complicated interaction between driver nonlinearities. #### **CONTENT** | 1 | Physics of generating a DC-displacement | . 2 | |---|-------------------------------------------|-----| | 2 | Effects of dominant nonlinearities | . 3 | | 3 | Method of measurement | . 3 | | 4 | Using the 3D distortion measurement (DIS) | . 3 | | 5 | Setup parameters for the DIS module | . 4 | | 6 | Example | . 4 | | 7 | More information | . 5 | # 1 Physics of generating a DC-displacement | Causes | <ol> <li>There are two mechanisms that generate a DC component in the displacement.</li> <li>Any asymmetry in the nonlinear characteristic of the electrical and mechanical parameters (partly) rectifies the AC signal and produces a DC component as well as second-order and higher-order distortion. The DC component has a much higher amplitude than any other harmonic and intermodulation component if the transducer is excited by a complex signal. The reason for this is that the DC component is accumulated by rectifying any fundamental component whereas the other distortion components are distributed over the whole frequency band.</li> <li>An electro-dynamical motor which has a perfect symmetrical Bl(x) characteristic may become unstable if the stiffness of the suspension is very low and the driver is operated above the resonance frequency. Any small dc force caused by motor asymmetries or an external disturbance (fingertip) will generate a DC displacement moving the coil down the Bl(x) slope until the restoring force of the suspension will stop this process.</li> </ol> | |-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Orientation | The sign of the DC displacement determines the direction of the voice coil shift. In this application note positive displacements <i>x</i> denote shifts that the coil move away from the backplate (coil out). | | Direction | The direction of the DC displacement depends on the shape (extrema, asymmetry) of the transducer nonlinearities such as $C_{ms}(x)$ , $BI(x)$ and $L_e(x)$ and on the frequency of the excitation tone. The DC displacement caused by an asymmetric compliance moves the coil always towards the direction of the stiffness minimum. An asymmetric inductance causes a DC component that moves the coil towards higher inductance values – similar to the attraction force in an electromagnet. The DC component produced by the force factor $BI(x)$ depends on the frequency of the fundamental component. For frequencies below the resonance frequency the coil is moved towards the maximum of the $BI(x)$ curve. This means that the coil is self-centering which is a nice feature. Unfortunately, the same motor will push the coil away from the $BI(x)$ maximum for any frequency above the resonance. | | Crossing point | Some loudspeakers produce both a positive and negative DC displacement depending on the frequency of the excitation tone. At the point where positive displacement changes to negative and vice versa (crossing point) all the DC forces produced by the different rectification processes cancel out each other. This point is quite reproducible and almost independent of the magnitude of the DC component. | | Influence of the suspension creep | The DC displacement of real world transducers varies with active operation. After starting to operate the transducer an initial DC component is generated. The magnitude of the DC displacement depends among others on the stiffness of the suspension at very low frequencies ( $f \approx 0$ Hz). However, the stiffness of the suspension of real transducers is frequency dependent. Usually, the suspension is much stiffer at the resonance frequency than at very low frequencies (corresponding to very slow cone movements). Any displacement of the suspension will cause changes in the geometry of the fibres of the rubber and fabric and the relocation time has a time constant in the order of magnitude of 1s. The loss of stiffness at lower frequencies is described by the creep factor which can be measured with LPM software module of the Klippel R&D System. The DC force will produce a variable DC displacement depending | | | on the creep factor and the measurement time. | |----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Critical ratio | The ratio between DC displacement and magnitude of the fundamental displacement | | | $\alpha_{DC} = \frac{X_{DC}(U_1, f_1)}{X_{fund}(U_1, f_1)} *100\%$ | | | is a critical measure for the stability of the driver. The DC displacement is negligible if $\alpha_{DC}$ < 10 %. Please note that in the DIS module $X_{fund}$ is presented in mm $\underline{rms}$ and $X_{DC}$ in mm $\underline{peak}$ . | # 2 Effects of dominant nonlinearities | Nonlinearity | Frequency of the Excitation Tone | | | | |---------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------------|--------------------------------| | | $f < f_s$ | $f = f_s$ | $f > f_s$ | f >> f <sub>s</sub> | | BI(x)<br>(motor) | moves to BI(x) maximum | no DC component | moves coil away<br>Bl(x) maximum<br>(unstable) | negligible | | C <sub>ms</sub> (x)<br>(suspension) | moves coil to<br>stiffness<br>minimum | moves coil to<br>stiffness<br>minimum | negligible | negligible | | L <sub>e</sub> (x)<br>(reluctance<br>force) | moves coil to $L_e(x)$ maximum | negligible | moves coil to $L_e(x)$ maximum | moves coil to $L_e(x)$ maximum | ## 3 Method of measurement | <b>Excitation signal</b> | A sinusoidal signal with variable frequency and amplitude is applied to the | |--------------------------|--------------------------------------------------------------------------------------------| | | terminals of the transducer. | | | Voltage Sweep: | | | A series of $n_{\text{U}}$ subsequent measurement with different excitation voltages is | | | performed. The $n_{\text{U}}$ voltages are spaced linearly between the starting voltage | | | U <sub>start</sub> and final voltage U <sub>end.</sub> | | | Frequency Sweep: | | | A series of n <sub>f</sub> subsequent measurement with different excitation frequencies is | | | performed. The n <sub>f</sub> frequencies are spaced logarithmically between the starting | | | frequency f <sub>start</sub> and final frequency f <sub>end.</sub> | | Loudspeaker | The driver has to be mounted in the driver stand and the laser sensor adjusted | | setup | to the diaphragm. A dot of white ink shall be used to increase the signal to noise | | | ratio of the measured displacement signal. | # 4 Using the 3D distortion measurement (DIS) | Requirements | <ul> <li>Distortion Analyzer + PC</li> <li>DIS software module + dB-Lab</li> <li>Laser sensor head and laser controller</li> </ul> | |-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Setup Don't forget ear protection! | Connect the microphone to the input <b>IN1</b> at the rear side of the DA. Set the speaker in the approved environment and connect the terminals with the output <b>Speaker 1</b> . Switch the power amplifier between the connectors <b>OUT1</b> and <b>Amplifier</b> . | | Preparation | <ol> <li>Create a new object</li> <li>Assign a new DIS operation based on the template DIS X fundamental, DC AN13.</li> </ol> | | Measurement | Start the measurement | |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 2. Open the windows <i>Fundamental</i> and <i>DC Component</i> . If the voltage $U_{end}$ is too low for the particular driver adjust $U_{end}$ in property page <i>Stimulus</i> and repeat the measurement. | | | 3. Calculate the ratio $\alpha_{DC}$ . | | | 4. Print the results or create a report | #### Setup parameters for the DIS module | Template | Create a new Object, using the operation template <i>DIS X fundamental, DC AN13</i> in dB-Lab. If this database is not available you may adjust the default DIS setup as described below. You may also modify the setup parameters according to your needs. | | |------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Default settings | <ol> <li>Open property page Stimulus. Select Harmonics in the drop down box Mode. Select Sweep in group Voltage U1. Set Ustart to 1 Vrms, Uend to 4 Vrms, Points to 4 and Spaced to lin in the same group. Select Sweep in group Frequency f1 and specify an sweep with 20 points spaced logarithmically between 10 Hz and 1000 Hz. Select Additional excitation before measurement and set it to 0.5 s. Set Maximal order of distortion analysis to 4.</li> <li>Open property page Protection. Unselect Monitoring: Voice coil temperature and amplifier gain.</li> <li>Open property page Input. Select X (Displacement) in group Y2 (Channel 2) and Off in group (Channel 1) Y1.</li> <li>Open property page Display. Select Displacement X in drop down box State signal and 2D plot versus f1 in group Plot style.</li> </ol> | | ### **Example** amplitude compression at high signal amplitudes due to the nonlinear mechanisms. **DC** component The result window *DC Component* shows the DC Displacement versus voltage $U_1$ and frequency $f_1$ . DC component 1,25 1,00 0,75 0,50 0,25 -0.25 -0,50 The speaker in the example produces both a positive and negative DC component depending on the frequency of the excitation tone. The crossing point at 70 Hz is close to the resonance frequency of the loudspeaker. These are typical characteristics for a motor with asymmetric BI(x) characteristic. Shifting the rest position of the coil to positive displacement (out) would increases the BI(x=0) value and improve the stability of the driver. #### 7 More information | Related Application Notes | Motor Stability, Application Note AN 14 | |---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Related<br>Specification | "DIS", S4 | | Papers | W. Klippel, "Loudspeaker Nonlinearities – Causes, Parameters, Symptoms" preprint #6584 presented at the 119th Convention of the Audio Engineering Society, 2006 October 6-8, San Francisco, USA Updated version on http://www.klippel.de/know-how/literature/papers.html | | Software | User Manual of the KLIPPEL R&D SYSTEM. | Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: Dezember 19, 2022