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Performance can be increased in one direction,
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________________________ >
(Hz)

E 125 250 500 1000 2000 4000
Felt, all hair (1 in) 0.13 0.41 0.56 0.69 0.65
(in contact with wall)
Caneite (12.7 mm) 0.1 0.15 0.27 0.31 0.45
Ductel, perforated foil 0.06 0.38 0.93 1.10 1.10 1.00
facing (25 mm)
Fibertex HD Rockwool 0.02 0.30 0.82 1.10 1.06 1.02
(25 mm)
Fibertex 650 Rockwool 0.59 0.97 1.18 1.00 1.04 1.02
(50 mm)
Glasswool Building 0.68 0.75 1.05 1.04 1.05 1.1
Blanket (50 mm)
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Requirements on Modern Loldspeakers
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Criteria for dominant Nonlinearities
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Measurement of Large Signal Parameters

New Standard IEC PAS 62458:2006
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Measurement of thermal Parameters
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Example: Assessing Power Handling
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Dynamic Measurement of the Mechanical Stiffness of Suspensmn Parts
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Measurement of Material Parameters
RIS = ppo e &l

Magnitude of transfer function H(f)
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A,

Subj Evalual

Wil

v

s FUPK B
Effects(distortion) Causes(parameters) Sensations(preferences)
A 4
Relationship
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Describing the linear behavior by Transfer functions

Radiation/ (r,)
o P
propagation |
soun
Ze “-' current pressure
....... E(o,r p(r,)
Motor/ X Cone Radiation/ 2
Voltage diaphragm [Songamn propagation sound
....... ' pressure
S — A HEp)
....... Radiation/ B p(r)
................... propagation sound
mechanical Heone(@:1) Y pressure
impedance Enclosure
Port
Horn
Panel
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Scanning System

for geometry and vibration of loudspeaker parts

1

¥

uoneIqIn

ulaye!

Vibration at 580 Hz
580 Hz ™ Fu=Erifhi="

Piston mode
Eﬁtl‘éiﬁﬁiiﬁéﬁ
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Decomposition into radial and circular
components

SRS R

=X

s

total rad circ

At 580 Hz

Radial vibration mode Circular vibration mode
FlEIEE e BUPIREI
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Vibration at 796 Hz
Riff bR

First ring resonance

5T TR IR
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Vibration at 984 Hz
Flfy— sk

73

Surround resonance
RudE: F =

<

Decomposition Technique

shows contribution to sound pressure at 984 Hz

T 984Hz ™ S IV HHRYE

'xtotal - 'xin +Xx + X

anti out—of
generates sound Reduces sound no sound
L [ {38 s AR B




Vibration at 7446 Hz
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Decomposition Technique

shows contribution to sound pressure at 7640 Hz

= Xy F X + Xo_or

~__

'xtotal anti
A

Increases sound Reduces sound no sound




Prediction of Sound Pressure

Total Sound Pressure In-Phase Component Anti-Phase Component
L

*‘/ff>/
\
/

2*102 4*102 6*102  8*102 103 2*108 4*108 6*108  8*103
Frequency [Hz]
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Sound pressure in the 3D Space

P R e

in-phase vibration component

1 P e
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SUMMARY

* What are the requirements for listening

to music in a small room?

* |s the situation for large rooms any
different?

80
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LISTENING TO REINFORCED AND
REPRODUCED SOUND

There are three main aspects that need to be
considered:

1) The sound system, including the design and
placement of the loudspeakers

2) The room acoustics
3) The listeners and their position in the room
| will talk mainly about the second of these.

81 <4p

SMALL ROOMS FOR MUSIC

* There is no standard definition of a small
room but think of rooms for music practice
and listening to recordings, broadcasting and
recording studios and motor vehicles (say
<250 m3 volume)

* There have been many recommendations,
based on room size, shape and surface
finishes. Early recommendations were based
on the even distribution of modes in a room.
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SMALL ROOM MODES

A room is a resonant system like an organ
pipe, or any other wind instrument, only more
complex because in an organ pipe the air
resonates in one dimension whereas in a
room it resonates in 3D (Room surfaces can
also vibrate.). In small rooms and at low
frequencies the variation in sound level is
very uneven (except at very low frequencies:
zero order mode). At higher frequencies and
in larger rooms the density of room modes
and their excitation is so high that the modes
are not noticeable.
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SMALL ROOM MODES

Axial mode pressure
d IStrl bUtlon QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

Tangential mode
pressure distribution

Oblique mode not
drawn
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Sound Pressure Response at one
listening position in a room

B

abildgaard@lyngdorf.com www.lyngdorf.com
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Sound Pressure at different
Locations in a Room

slel =zl =]l=]=]=
|l IS E2|SISIE2E] 2

10, Clyo
abildgaard@lyngdorf.com www.lyngdorf.com
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* This is what the

frequency response
of a room looks like.

* Why bother worrying
about the frequency

response of a
loudspeaker,
especially a sub-
woofer, when
listening in such a

room?

SMALL ROOM MODES
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Recommended Room Dimension
Ratios for Small Rooms Based on
Modal Distribution Considerations

Name of Ratio

Ratio of Room
Dimensions

Harmonic
Knudsen
European
Volkmann
Golden Ratio
Sabine
Sepmeyer 1
Sepmeyer 2
Louden

BBC Prototype

1:2:3
1.6:3:4
3:5:8
1:1.6:2.5
1:1.25:1.6
2:3:5
1:1.14:1.39
1:1.28:1.54
1:1.4:1.9
3.25:4.9:6.7

Equal Volume
Normalized
1:2:3
1.09:2.04:2.71
1.11:1.84:2.95
1.14:1.83:2.86
1.44:1.80:2.31
1.17:1.75:2.92
1.56:1.78:2.17
1.45:1.86:2.23
1.31:1.83:2.49
1.25:1.88:2.57

Relative
Floor Area
6.00
5.53

5.43
5.24
4.16
5.13
3.85
4.14
4.55
4.82
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SMALL ROOM ABSORPTION

Another way to reduce the variation in sound
pressure in a room (besides modal
distribution) is use sound absorbing finishes
and furnishings but this has two problems:

It is difficult, space consuming
(thickness=c/4.f) and expensive to absorb
sound uniformly, especially at low frequencies

To eliminate pressure variations due to room
modes means very absorbent spaces (low
RTs) which people find claustrophobic.
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SMALL ROOM SOLUTIONS

There are some solutions:

Higher sound levels. These saturate the inner-ear
hair cells so that pitch and intensity cannot be
perceived well but there are likely to be problems with
neighbours

Larger rooms but these are expensive

A combination of absorption, room size and room
shape (standard listing room approach) but this is
also expensive

(Diffusion is also considered important by some but
there does not seem to be good evidence for this in
small rooms as acoustic glare doesn’t occur.)

Understand the importance of the position of
loudspeaker and listener
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WHAT MAKES A GOQOD LISTENING
ROOM?

There is very limited information on
what makes a good small room for
listening to music or playing music in eg
a music practice room. We set out to
find the preferred combination of size,
shape and surface finishes in music
practice rooms. A brief outline of this
work may be of interest.
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ASSESSING ROOM ACOUSTIC QUALITY

Diagram of the monophonic sound reproduction and binaural

recording set-up

B&K HATS

Music Practice Room
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SMALL ROOM ACOUSTIC QUALITY

The binaural recordings made in 25 rooms
were played to 10 musicians over open
headphones using a 2AFC procedure. The
results were, to some extent, dependent on
the musical instruments played. The results
were used in an artificial neural network
analysis to determine trends and the ANN
was then used to display trends for different
combinations of parameters. The results are
not always what one would expect but they
tend to confirm that loudness is probably the
most important factor.
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SMALL ROOM RESULTS: CELLO

Absorptivity A = Absorptive Absorptivity C = Reflective

CELLO T30 T30

VOLUME| 0.2s | 0.3s
20 cu.m AN
KRRl Poor | Poor
PIRTR0] Poor | Poor
T Poor | Poor
60 cu.m TR
80 cu.m [TTTARCETTS
(IO Poor | Poor
130 cu.miLE AN L]
160 cu.m| | Poor
Loudness=70dB

VOLUME| 0.2s
20 cu.m [Neloleld]
30 cu.m el
40 cu.m | Fair
50 cum | Fair
60 cu.m | Fair

Good | Good | Good
Good | Good | Good
Good | Good | Good
Good | Good | Good

Good | Good | Good

Good | Good | Good
| Good | Good
| Good | Good

80 cu.m | Fair
100 cu.m| Fair
130 cu.m| Fair Fair | Fair | Fair
160 cu.m| Fair | Fair | Fair | Fair | Fair | Fair | Fair

Loudness=80dB Absorptivity = A Loudness = 80dB
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LARGE ROOM ACOUSTIC QUALITY

Large rooms, such as concert halls, have
received far more attention over many
years. Some of the reasons for this are:

There is no need to consider room modes
and so theoretical analysis is easier

The cost of failure is much greater even
though there are hundreds of small rooms
built for every large one

Expectations are higher (and sound levels
lower)

95
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Why concert hall design is an art
rather than a science?

The subjective assessment of concert hall acoustic

quality is very dubious

The 1ssue is multi-factorial and multi-dimensional
but there is very little data to work with

No recognized useable method of designing
concert halls

Measurements as simple as RT and EDT are
sometimes not reproducible within acceptable
tolerances

Measured data and recommended values are
usually for empty halls
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COMMON DESIGN GUIDELINES FOR
LARGE ROOMS

Volume per seat: 6<V/N<8 m3
Rectangular halls

Long narrow halls

Less than 3000 seats

Seats with similar absorbing properties to
people sitting in the seats

Reverberation time of about 2 sec
Diffusing surfaces
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RECTANGULAR AND NON
RECTANGULAR HALLS

The distinction is often made between
rectangular (shoebox) and non-rectangular
halls.

The definition of rectangular halls is not
standardized but appears to be a hall with
parallel and vertical side walls (£5%7).
Balconies, decorations etc are not
considered.

A non-rectangular hall is any other shape.

Some halls are difficult to categorize, eg
Chicago Symphony Hall, while others such as
Boston and Berlin are easy to cateqorizes: <>




CHICAGO SYMPHONY HALL

I 1!

Voo, wa, v AT, LA

BOSTON SYMPHONY HALL




BERLIN PHILHARMONIE
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ACOUSTIC PARAMETER STUDENT t-
TEST SUMMARY

N/EDT  EDT/(V/N EDT 1-IACC Gmid TI TI/EDT  N*Gmid
ALL HALLS
TTEST B/W 0.0018 0.0347 0.0029 0.0029 0.0005 0.0057 0.0012  0.0004
TTEST B/M 0.2232 0.0475 0.4300  0.0987 0.0131 0.0573 0.1567  0.0045
TTEST M/W 0.1146 0.7969 | 0.0856 0.2122 0.1142 0.6294 0.1626  0.2359

TTEST B/(M+W) 0.0069 0.0226  0.0228 0.0029 0.0005 0.0038 0.0030 0.00003

N/EDT  EDT/(V/N) EDT 1-IACC Gmid TI TI/EDT  N*Gmid
REC HALLS
TTEST B/W 0.0021 0.4378  0.0058 0.0861 0.0050 0.0008  0.0000 0.0415
TTEST B/M 0.7862 0.0009  0.2502 0.0671 0.1129  0.1511 0.1360 0.0001
TTEST M/W 0.0977 0.0358 0.4139 0.5590 0.5468  0.2188 0.1277 0.1440

TTEST B/(M+W) 0.1165 0.0859 0.0156  0.0074  0.0055 0.0012  0.0005 0.0033

N/EDT EDT/(V/N) EDT 1-IACC Gmid TI TI/EDT N*Gmid
NON REC HALLS
TTEST B/W 0.1181 0.9315 0.0622 0.2532 0.0177 0.7434 0.3303 0.0061
TTEST B/M 0.3679 0.5208 0.8704 0.9786 0.2484 0.7259 0.9180 0.1319
TTEST M/W 0.4800 0.5383 0.1464 0.3053 0.1790 0.9463 0.4155 0.1051
TTEST B/(M+W) 0.1526 0.6420 0.2716 0.4297 0.0131 0.7147 0.5340 0.0078
Pr<5%
5%<Pr<10%

P Pr<5% B/(M+W), B/W

worth noting
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GEOMETRIC PARAMETER
STUDENT t-TEST SUMMARY

ALL VolumeSeats V/IN  |W D N*W/HHMW N*W/L [LW - N/H - N*D*2/(H*W
TTEST (B/W) 0.2387 0.0285 0.7021 0.0028 0.0386 0.0007 0.0034 0.0099 0.0185 0.0021 0.0321
TTEST (B/M) 0.1054 0.3739 0.1195 0.0157 0.2138 0.0780 0.0116 0.1094 0.0401 0.1672 0.4773
TTEST (B/(M+W))0.1820 0.0916 0.6313 0.0029 0.0623 0.0224 0.0011 0.0253 0.0084 0.0286 0.1489

REC Volume Seats V/N NN H D NFW/HT H/W  N*W/L  N*DA2/(H*W)
TTEST (B/IW) 0.6239 0.0442 0.0793 0.0582 0.7183 0.2904 0.0221 0.164 0.0489 0.1197
TTEST (B/M) 0.6892 0.8351 0.6149 0.0241 0.9209 0.8309 0.315 0.1824 0.2777 0.5475
TTEST (B/(M+W)) 0.5464 0.1968 0.5339 0.0106 0.8754 0.421 0.0531 0.0761 0.0683 0.5900
NON REC Volume Seats VIN W H D N*W/H HW  N*W/L N*DA2/(W*H)
TTEST (B/W) 0.7102  0.45 0.6612 0.5576 0.7455 0.1945 0.1616 0.3814 0.4304 0.1131
TTEST (B/M) 0.4889 0.7106 0.448 0.434 0.2174 0.3325 0.3563 0.2731 0.5746 0.3594
TTEST (B/(M+W)) 0.657 0.5448 0.9754 0.4743 0.5327 0.2341 0.3185 0.2994 0.4813 0.2159
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LARGE ROOM DISCUSSION

» A hall’s size, shape and surface finishes cannot guarantee
how good a hall will be judged acoustically if other factors
such as background noise level, reverberation time, seat
comfort and aesthetics are important.

* The fact that there is a significant relationship between a
single acoustic or geometric parameter and hall acoustic
quality is surprising and can only be explained by other
factors not being important or being uniform enough not to be
an issue in the halls used for this study. EDT, for instance, is
important but halls often have adequate EDT values and size,
shape and seat numbers (which provide most absorption) are
sufficient for its determination.

* Remember there are limitations in the measurements and
assessments on which this analysis is based.
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LARGE ROOM CONCLUSIONS

* Commonly used design factors such as V/N do not appear
to be useful.

+ Size does matter: there are no ‘Best’ halls with more than
3000 seats.

+ Shape is also important: narrow rectangular halls are much
more likely to be in the ‘Best’ category and non-rectangular
halls are much more likely to be in the ‘Worst’ category.

* Geometrical parameters such as W and N*W/H can be used
for approximately indicating acoustic quality if a hall can be
categorized as rectangular (W<25m, N*W/H<2500) .

« N*D2/(H*W)<4500 seems the best geometric design
criterion for non-rectangular halls but it is not recommended
even though it is better than some currently used such as
6<V/N<8.
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CONCLUSIONS (CONTINUED)

* N*G,,4,>10,000 is the best universal predictor of
acoustic quality but even it cannot guarantee ‘Best’
quality halls and some halls are ‘Best’ quality with
lower values.

* G,,4 can be predicted, with sufficient accuracy, using
a neural network and geometrical inputs together with
audience size (more later).

14000

*

12000 ‘.e ,‘: o
10000 N

N
- ]
8000 - * BEST

6000 4_{:‘*.7 u MEDIAN

4000 - a WORST

2000
0
-2000

106 <4p




LARGE ROOM FINAL COMMENTS

Concert halls are much like audio systems: they keep on
improving and we keep on being critical of the sound
produced as we become more sensitive . ....... or more
fashion conscious, and so perhaps we need to continue to
improve/change the quality of concert hall acoustics, just
as audio systems continue to change. Thus we may find
that after we have got RT and G right there will be other
factors which assume more importance.

The loudness of the sound is an important issue for large
rooms as it was for small rooms.
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Assessing the Large Signal Behavior

i iFEE Dj —— AN
Input Signal Output signal
..... o SHE! e
S < -
Measurement
S
73 #T
Analysis
QEERE « B
Distorted | S ) JESEN R R FHE Disturbances
Waveform B [F SO (Clicks, Rub& Buzz,
Nonlinear Symptoms ~ "“-..__ Noise)
a7 v A
B o E Ry TRt ESEIF
New Spectral Components Instabilities Amplitude Compression
(Harmonics, Intermodulation) (DC Displacement)
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Stroboscopic View on the Vibration Behavior

l iR
stroboscope
——
— scale

pointer

i >
Generator gg‘jy — I,E{jf"[ ;J,Ig

tone at f

H ik
Resonance
frequency f

1. Experiment 2. Experiment 3. Experiment
f<fy fafg f>f,
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Motor Instabilities

Unstable for f > f,

Occurs in drivers having B, *T T T e |
- soft linear suspension o @/b\
- Equal-length configuration 4
(BI(x) nonlinearity)
- Sinusoidal stimulus f > fs

- Bifurcation into two stable states of vibration
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IESEEE

Nonlinear Symptoms

LT T T

Sym oms show only effects not the cause

¢ PR O ot

can not describe the large signal behavior completely

" OIVHARL N E] SRR (5

depend on prop! rtles e stimulus (music. est signal)

o JUTRAT ffi'gu—’[z?@\[iﬂfﬁ {5

depend on onlinearity

JARRTEE L SRS s e A RS T

For example Total harmonic distortion is only one special symptom
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Physics of a Loudspeaker Defect
T AR VPR 5

Example: glue problem

7: @7FFFFJ)%€ Externally excited J

mass

parasitic resonator @. Loose joint
spring ¥ ]ﬁlj A
(Nonlinearity)

Most defects behave as a nonlinear oscillator 7 Y2 [EEU4: = R0
« active above a critical amplitude &[Sl FfEl - VA

+ new mode of vibration 7 ! &ﬁg?fmé‘ﬁﬁ;“

» powered and synchronized by stimulus [11337% i Fg

« constant output power ﬁ?@iﬁ]ﬁﬁﬁﬁ - iR
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Level of the Signal Components
S RY

Vo”age at Linear System ﬂ?@_»@\—@—b SPL at Mic
Terminals 4

v

Regular 90dB
Nonlinearities

50 dB

—»  Defects

Problems: #gif]_Hiv~I#E

» symptoms of defects are very small (but still audible)
TAFSE T 0 T BN (I TRLR B

» ambient noise in a production environment

e =R gk
o f ?’ 114 <>




Measured and predicted response
of a speaker excited by a sinusoidal sweep
R g s

Measured Desired

KLIPREL
1,00

0,75

|||||

ﬂ i
I
KK

0,50

0,25

-0,00

\%]

-0,25

i

-0,50

-0,75

-1,00

/
) 250 ?;:(%i;/) J / /

290 300 310 320 330 340 350 360 370 380 390
Time ms]
m—

* Model has to be nonlinear to consider regular motor and
suspension distortion !

» Deviation caused by Rub and Buzz distortion
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Harmonic Distortion {4 4 &

Stimulus: Sinusoidal sweep

— ||

IHD RMS of IHD
-10 - f KEIRPE
-20 /\ |

\.‘ ’M
-30 Il ¥
-40 A"\l\ Py
g 50 [T NAA \ A\T
-60 —HH HW»’\&/
H\‘HH ‘ H N

W IR IR
-80

50 100 200 500

Frequency [Hz]

Instantaneous harmonic distortion (IHD)
Mean value of harmonic distortion (IHD) - THDN
Peak harmonic distortion (PHD)
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Crest factor of distortion

20,0 LIPPEL A
17,5
150 & buzz, other disturbances | |
12,5
L e R RN A F111 e AR 3 o} SRR R P
75 A
’ J\ M~
oo P !
\ re
25
\ 4
50 100 200 500
Frequency [Hz]

 Almost independent of the amplitude of the harmonics

* Depends on the phase of the harmonic components

» Can be interpreted on an absolute scale !
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Instantaneous crest harmonic distortion ICHD(f,x)
Case A: ,beating wire of a defect driver*

Instantaneous crest harmonic distortion (ICHD)

I & (hil D dB
. 1T

L i

'ZE | (

4_ NN )

0 _i o0 ) W) 4

12 8 | o

5.1
22 75
o U il [ ‘ I
L
28
20 b,

Frequency [Hz]

Defect occurs at + 10 mm displacement at 50 Hz
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Quality Control in Manufacturing

TASK: Each unit within specification
PROBLEMS:

» Defects may become worse in final application (e.g. loose
particles)

» Short measurment time according production cycle

SOLUTION

100% testing
» Most sensitive testing (meta-hearing technology)
* Process statistics (Cpk, Ppk) =>tune production process
« Trend recognition - prevent systematic failures

119 4p
Application to
QC end-of-line testing
;RrE’\ [—I:IIIE EII F‘%Fl

_ ‘.:__ ‘_:l__-:___::_ _‘z__l__:‘m-; PASS;—_-?-
new hardware and software |- \ Hhv\l‘”\ _—
dedicated for manufacturing = R m: .

Aler —w;;;-\___\‘ g |
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Detecting Defect Units with

Stimulus Isolated

inaudible symptoms it il i

DUT m
p(t)
Distortion
Model
p'(t)

Meta-Hearing Technology

classificator | —pu- Fail/Pass

Regular distortion are predictable
Modeling of regular distortion (adaptive learning)
Masking by regular distortion can be removed actively
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Bk E Jg ';**5{‘
A8 é’gla =
HER
Approach
HEEN = BT
Objective Subjective
Y A
£ = @
Measurement Subj. Evaluation
, }
s BN R
Effects(distortion) Causes(parameters) Sensations(preferences)
SIM
NI R O P—
Relationship
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Quality in Product Design

TASK: Realization of the specified product
target

PROBLEM: Evaluation of many design choices

SOLUTION: Numerical design tools (FEM, BEM
and SIM) predict transfer behavior

RESULT: Complete Design (Drawings,
materials, Manufacturing process)
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Relationship between Nonlinearity and Distortion

1. A set of meaningfu| and LOUDSPEAKER NONLINEARITIES
comprehensive distortion N
measurements N

2. Simple interpretation of the
results

3. Synthesis of desired L -
transfer behavior

Detailed Description > AES Convention Paper: ,Loudspeaker
Nonlinearities — Causes, Parameters, Symptoms,“ Preprint 6584
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W
Approach
& BN By
Objective Subjective
v A,

EHH] = W
Measurement Subj. Evaluation
k. i v
FRA R R
Effects(distortion) Causes(parameters) Sensations(preferences)

A 4
o AUR
R IR
Relatiorqship
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Quality in Product Definition

PROBLEM: Quality is cost sensitive (e.g. Large Signal

Performance)

TARGET: Comprehensive Objective Specification

SOLUTION: - Auralization (objective and
subjective investigation between Marketing and
engineering)

RESULT: Optimal Compromise giving maximal
overall benefit to user
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Simulation of Loudspeaker Performance

MR 9 ok
Music,test sianals——@—»0 o—O—>» Bl

usic,les SI(];EIS : D|g|ta| : ?’]%ﬁl_ T
| Model :
| Bt A !
i :
! 1
! [

Sound pressure output

PREES, R, TR, R
Displacement, Current,Power, Temperature
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Listening into a Digital Model

ey

T
Parameters ™~ = i

|
|
|
"y ) FiEE

S ?_0_’ (9? Sound pressure output

i —o—
R 9

Music,test sianals

N
|
| gE RGERE
|

Motor Distortion
¢ Epatd
Suspension Distortion
ﬁ;ﬁ%&?“, '?E?ﬁu, jj$, iﬁ‘@ “ (9%

Displacement, Current,Power, Temperature

Fr
Inductance Distortion
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Measurement of Safety Headroom

Sin Spis Example
%‘ﬁ'ﬁi@%’; Ideal Speaerk 0dB -100 dB E@:E
A 0dB -12dB g
J_E1 5% '] Distortion decreased 0dB 9dB E(E):E
0dB -6 dB (8
0dB -3dB e
AR Real Speaker 0dB 0dB §:
0dB 3B | ¢
H HJFE6 threshold of audibility| g qg—> 6 dB ¢ )
| v :}'\E' 17 Distortion increased 0dB 9dB T( ):E
0dB 12 dB [
B TR TR BT o i 2
Safety Headroom = Increase of S5 to make distortion audible
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Output of an Low-Quality loudSpeaker
110
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L Fundamental
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L threshold
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[ No safety headroom
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Distortion
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Output of a High-Quality loudspeaker
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Output of an optimal Loudspeaker
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Auralization in Loudspeaker Development

’»

¢

N e
T

7315@5: éfl: Ff 1’1{‘, ) i [ - W ﬁﬁj?ﬂ b
P DevelomeJnt & @f f— - § { Marketlng
Manufacturing o - Management

utput & G
zﬁ_l# ’r?c—“ Dlsplacement Temperature LRI BT Sufficient Sound Quality
7 [, Evaluation of Design Choices o 2 ; ')fﬁ‘] B Tuning to the target market
ot 'yE';“i%ﬁU f[J Indications for Improvements o SRR AL "‘Performance/Cost Ratio
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Aspects important for Quality

Sound Quality

(Stimulus> Transducer-> System->Room->Listener)
Maximal Sound Pressure

(bass reproduction)

Efficiency

Battery power in cellular phones

Weight, Size, Cost
Reliability
Overall Benefit for the User
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Conclusion

Linear Models are useful in the small signal domain

Room has significant impact on sound quality

Nonlinear models explain loudspeaker behavior at high amplitudes
Comprehensive measurement data correlate with subjective evaluation

Advanced measurement and simulation tools are crucial for
loudspeaker design
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