TFA Time Frequency Analysis

Software of the KLIPPEL Analyzer System (Document Revision 1.6)

FEATURES

- Spectrogram analysis
- Wavelet transform
- Auditory filter bank
- Short-time Fourier Transform (STFT)
- 3D waterfall plot
- Detailed signal characteristics
- Playback of filtered waveform
- Compatible with QC 3DL

APPLICATION

- Defect (Rub & Buzz) analysis and auralization
- Detecting acoustical and mechanical resonators (room modes, rocking modes)
- Visualizing signal distortion

DESCRIPTION

The Time Frequency Analysis (TFA) is a post-processing module that visualizes the characteristics of any audio signal over time and frequency. The processing is based on four different methods (*Wavelet Transform, Short Time Fourier Transform,* Cumulative Spectral Decay, *Filter Bank*) and can be applied to waveforms and impulse responses generated by the KLIPPEL Analyzer System or imported from external sources such as audio files. For additional subjective diagnostics, the TFA integrates a dedicated player function for auralizing signal parts that can be directly selected in the spectrogram with variable playback rate.

Item number:

1000-920

CONTENT

1	Principle	. 2
2	Examples	. 3
3	Requirements	. 3
4	Processing Methods	. 4
5	Parameters	. 5
6	Results	. 8
7	References	14

1 Principle

Time-frequency plots (spectrograms) are a common tool in audio analysis and forensics to monitor the spectral information of audio signals over time in an intuitive way.

Similar to a music sheet, the spectrogram visualizes which frequencies are present at which time as shown in the music example below.

Applied to audio systems testing these methods provide highly valuable diagnostic information about defects or other abnormal behavior. Particularly when processing responses of sinusoidal test signals such as chirps, the different symptoms in audio reproduction can be identified and separated in the spectrogram.

Another common application is the analysis of impulse responses to visualize the spectral decay over time that helps to identify mechanical or acoustical resonance and calculation of the frequency-dependent reverberation time from room impulses.

Based on four different methods, the Wavelet Transform (WT), the Short Time Fourier Transform (STFT), the Cumulative Spectral Decay (CSD) or a Bark scaled Filter Bank Analysis (FBA), the TFA decomposes the input signal and visualizes the signal characteristics over frequency and time.

2 Examples

3 Requirements

3.1 Hardware	
Operation	Since the TFA is a post-processing application, no dedicated analyzer hardware is re- quired. However, a KLIPPEL USB license dongle is required to run the TFA on a <i>Windows</i> PC.

Playback	In order to use the playback function of the TFA, a playback device is required
3.2 Software	
	Running the TFA requires KLIPPEL dB-Lab 212 or higher and a TFA license.

4 Processing Methods

4.1 Wavelet Transform (WT)

The *Wavelet Transform* is an analysis method that correlates a signal with particular basic functions, so called Wavelets. Depending on the frequency, the length of the wavelet varies to optimize the relation between time and frequency resolution for each frequency band.

Basic Wavelet Transform [1]	$Y^{\psi}(a,b) = \left \frac{1}{\sqrt{ a }}\int_{-\infty}^{\infty} x(t)\psi^*\left(\frac{t-b}{a}\right)dt\right ^2$			
	$x(t)$ input signal in time domain $\psi^*\left(\frac{t-b}{a}\right)$ conjugate complex wavelet function (normalized) a, b scaling parameters			
Complex Gaussian Morlet Mother Wavelet – Time Domain [2] [3]	The analysis uses the complex Gaussian Morlet wavelet which is represented in time domain by $\psi(t) = \frac{1}{\sqrt{\pi B}} e^{j\omega_0 t} e^{-\frac{t^2}{B}}$ and frequency domain by $\Psi(\omega) = e^{-(\omega - w_0)^2 \frac{B}{4}}$ with $B = \frac{4}{(\omega_0 BW)^2}$			
	B Bandwidth parameter ω_0 Wavelet center frequency BW Bandwidth in Octaves			

4.2 Short Time Fourier Transform (STFT)

The *Short Time Fourier Transform* uses a window function that is shifted successively over a time signal. Calculating the Fourier Transform of each windowed section provides the spectral information at each time interval. Limited by the uncertainty relation the results of this method are a compromise between frequency resolution and time resolution. The signal level over time and frequency is defined by:

$$Y(t,f) = \left| \int_{-\infty}^{\infty} e^{-j2\pi f\tau} x(\tau) h(\tau-t) d\tau \right|^{2}$$

4.3 Cumulative Spectral Decay

The CSD shows the power decay of an impulse response h(t) over time across different frequencies (e.g., octave bands). By using a shifted time window u(t), like the Heaviside step function, CSD determines how quickly the energy diminishes at various frequencies.

This is essential for evaluating room acoustics (reverberation time, room modes) as well as for designing and optimizing audio systems (mech. acoustical resonances).

 $|Y(t,\omega)|^2 = |\mathcal{F}\{u(t-\tau)h(\tau)\}|^2$

4.4 Filter Bank (FBA)

The Filter Bank Analysis (FBA) separates the spectral components of an input signal using multiple auditory band-pass filters according to *ITU-R BS1387-1* recommendation. The center frequencies are evenly distributed over a Bark frequency scale (roughly logarithmic).

The FBA is able to visualize short-time effects such as impulsive noise or the fluctuation of an amplitude-modulated signal. The time resolution in lower frequencies is the best of all of the other methods.

The figure below shows a schematic example for a typical filter bank use case: the analysis of a defective speaker's response to a chirp signal.

5 Parameters

5.1 Input

Select	The parameter specifies from where the data will be imported.			
	File	Absolute or relative path to a wave file.		
	Directory	Absolute or relative path to a directory containing wave files.		
	Clipboard	Paste waveform curve from other dB-Lab operations.		
	Operation	Import waveforms from other operations of the KLIPPEL		
		Analyzer system		
	Imported	Select data which is already imported.		
Impulse Response	This option shall be activated when an imported wave file or data imported via			
	clipboard shall be interpreted as an impulse response			
Store File	If checked an impor	ted long wave file will be stored in the attachment.		
5.2 Analysis				
Analysis Method	This parameter sets the time-frequency analysis method			
None				
	Wavelet Tr	Transform		
	Short Time	ne Fourier Transform		
	Cumulative	e Spectral Decay		
	Filter Bank	nk , ,		
Analysis Resolution &	The Advanced Mode checkbox is recommended for users with some experience in			
Advanced Mode the field of time frequency analysis and offers more detailed settings		equency analysis and offers more detailed settings to tune the		
	analysis in the prefe	referred way.		
	When Advanced M	Mode is inactive (default), many parameters are hidden and three		
	Analysis Resolution	on are available as processing templates.		
	Frequency	ency Priority		
	Default			

	Time Driarity			
	Inne Priority The neuronication of the Mouselet Transform and the Chart Time Fourier Transform			
Transform	The normalization of the Wavelet Transform and the Short-Time Fourier-Transform			
Normalization	can be adjusted to suit the signal to be analyzed:			
	Periodic Signals			
	Impulses			
Time Resolution	This parameter is only visible for the wavelet transform and the filter bank since the			
Reduction Mode	time resolution of both analysis methods is reduced to limit plot data size. The user			
	may choose between two calculation modes:			
	BMS			
	• Peak			
Time Resolution	The user can choose between four predefined time resolutions or specify a custom			
Spectrogram	time resolution. The predefined time resolutions are:			
	Coarse (500 ms)			
Medium (50 ms)				
	• Fine (5 ms)			
	QC 3DL Resolution			
Analysis Range	There are dedicated parameters for selecting the frequency and time range of the			
	input signal to be analyzed. These values can also be adjusted via cursors			
	Start Time			
	• End Time			
	Frequency Minimum			
	Frequency Maximum			
Wayelet Transform				
Bandwidth	Wavelets have a constant octave fraction bandwidth which affects the time			
	resolution of the used wavelets. With a high bandwidth the wavelet will be sensitive			
	for short effects like impulses and defects. Smaller bandwidths (< 1/4) for example			
	are used for detecting resonances. Available bandwidth options as octave fractions:			
	• 1			
	• 1/2			
	• 1/3			
	• 1/4			
	• 1/6			
	• 1/0			
	• 1/8			
	• 1/10			
	• 1/12			
	• 1/16			
Short-Time Fourier Transf	orm			
Window Type	Window function which is used for the STFT (e.g.: Hann, Rectangular, Tukey)			
Window Time	Length of the time windows			
Window Overlap	Overlapping of the windows in percent			
Cumulative Spectral Deca	v			
Window Type	Window function to extend the stan function in order to reduce artifacts			
window Type				
	• Hamming			
	Triangle			
Rise Time	Rise time of the window function from 10 % to 90 %			
Calculate T60	Activates the frequency-dependent reverberation time $T_{60}(f)$ calculation.			
Automatic Time Range	Sets the processing range for the frequency-dependent reverberation time			
-	calculation automatically. Only available if "Calculate T60" is activated.			
Eller Devel	· ·			
Filter Bank				
Number of Filters	Number of filters used for the analysis. Available options:			
	• 10			
	• 20			

	• 30				
	• 40				
	• 50				
	• 60				
	• 70				
	• 80				
	• 120				
5.3 Display					
Log. Freq.	Sets logarithmic frequency a	xis in all plots.			
Spectrum					
Spectrum Resolution	If enabled, the resolution of the Input Spectrum and Transfer Function Magnitude				
Reduction	windows are reduced. The fo	ollowing target resolutions are available:			
	• R10 (3 pts/oct)				
	• R20 (6 pts/oct)				
	• R40 (12 pts/oct)				
	• R80 (24 pts/oct)				
	By resolution (custo	im)			
3D Display					
3D Time Resolution	Sets the time resolution of the	ne 3D Plot window			
Spectrogram					
Result Normalization (Spectrogram)	With this option, the spectro	gram level can be normalized to 0 dB			
	None	No normalization			
	To Peak	The results will be normalized to the overall peak			
	To fundamental	Normalizes every individual frequency channel to its			
	no runuamentai Normalizes every individual frequency channel to neak value				
Result Range	(opt.) displayed level range in dB				
Result Max	(opt.) maximum displayed le	vel in dB			
Color Map	The Color Map defines the co	olor scale used for representing the level over time and			
	frequency in the Spectrogram window. Various pre-defined color maps are available (default: <i>let</i>)				
Color Map Resolution	This property sets the granularity of color scale used to display the result in the				
	Spectrogram window				
	• Low				
	• Mid				
	• High				
	Custom				
Custom Color Map	In addition to the pre-defin	ed color maps a custom color map may be used by			
	selection the <i>Color Map</i> option <i>Custom</i> . The custom color map is defined as an n×4				
	matrix. The first column is the spectrogram level associated with the color. The three				
	other columns define the RGB colors. Thus, n corresponds to the number of level				
Transparency Color	Adjusts the color of the over	erlay on the Spectrogram 's non-playback area, which			
	excludes specific time and frequency ranges from playback.				
Highlight Max Value	If enabled, the maximum value of the displayed Spectrogram will be highlighted with black color				
Time/Frequency Cursor	When cursors are activated t	wo dashed lines are shown in the spectrogram window			
	and the Level at <i>Time Cursor</i> and <i>Level at Frequency Cursor</i> plots will be shown. The				
	positions of the cursors correspond to the parameters <i>Time Cursor</i> and <i>Frequency</i>				
	Cursor.				

5.4 Player

•	
Input Level	Relative level of the input signal's peak value to full-scale digital amplitude in dB.
Normalize Playback	When activated, the input waveform in playback range will be normalized before playback.
Set Playback Level	Sets the input signal's peak value in relation to full-scale digital amplitude in dB.
Playback Rate	The playback rate of a signal may be changed with this parameter affecting speed and pitch.
Number of Loops	The number of times the input waveform will be played back may be specified.
Enable Bandpass Filter	When activated the imported audio signal within the playback range specified in the is band-pass filtered before playback.
Lower/Upper Cutoff Frequency	These parameters determine the lower/upper frequency limit for the playback band-pass filter.
Export	The full or only the selected (and filtered) waveform can be exported to a wave file.

6 Limitations

6.1 Setup Parameter Limits					
Parameter	Symbol	Min.	Тур.	Max.	Unit
WAV FILE IMPORT					
Sampling Frequency	f_{sample}	6	48	192	kHz
Bit depth		8	16	32	Bits
File Length	$t_{ m signal}$	0.01	5	3600	S
INPUT					
File / Directory	Only WAV files are supported.				
Clipboard / Operation	Only signals up to a length of 950000 samples (≈19.79 s @ 48 kHz)				
PLAYER					
Set Playback Level	LPlayback	-100	0.0	0.0	dBFS

Waveform	The Waveform shows the imported signal's waveform. By using the provided curse the processing time range can be adjusted. If a long wave file is imported, this wind will show the full wave file content as a bar graph. The bar graph shows peak, bott and root mean square values of time intervals of the imported wave file. A detai				
	view of the selected processing time range is given in the Waveform (Time Range) win-				
	dow.				
	Input Signal —— Time Range				
	0.15 KUPPEL				
	0.10				
	2 0.05				
	> -0.05				
	-0.10				
	-0.15				
	0 200 400 600 800 1000 1200 Time / ms				

8 References

8.1	Related Products	 S6 – Transfer Function (TRF) S7 – Transfer Function Pro (TRF-Pro) S63 QC 3DL – Spectrogram 3D Limits
8.2	Standards	• <i>Rec. ITU-R BS1387-1</i> - Method for objective measurements of perceived audio quality
8.3	Literature	[1] P. Goupillaud, J. Morlet and A. Grossmann, "Cycle-Octave and re- lated transforms in seismic signal analysis," Geoexploration, vol. 23, pp. 85- 102, April 1984.
		[2] D. B. Keele, "Time-Frequency Display of Electroacoustic Data Using Cycle-Octave Wavelet Transforms," in Audio Engineering Society Convention 99, 1995.
		[3] S. J. Loutridis, "Decomposition of Impulse Responses Using Complex Wavelets," J. Audio Eng. Soc, vol. 53, no. 9, pp. 796-810, September 2005.
		[4] L. Cohen, Time-Frequency Analysis, Prentice Hall PTR, 1995.
		[5] O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Processing Magazine, vol. 8, no. 4, pp. 14-38, #oct# 1991.
		[6] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, #jul# 1989.
		[7] W. Klippel, "Physical and Perceptual Evaluation of Electric Guitar Loudspeakers" (download)

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: October 16, 2023

