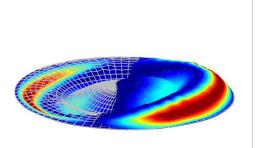
Higher Modal Analysis - HMA (Pre-Release)

S60

Specification to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.3)

PRELIMINARY SPECIFICATION – PRODUCT IS STILL AWAITING FORMAL RELEASE


This specification is preliminary and is subject to change.

FEATURES

- Automatic Modal Analysis for transducers
- Decomposes vibration into separate modes
- Extracts modal parameters (e. g. damping)
- Displays material deformation (~stress)

BENEFITS

- Study characteristic vibration patterns individually and regarding their interaction
- Analyze measured and simulated data in the exact same way (=modal representation)
- Find sources of nonlinear distortion
- Solve sound radiation problems
- Improve cone geometry design

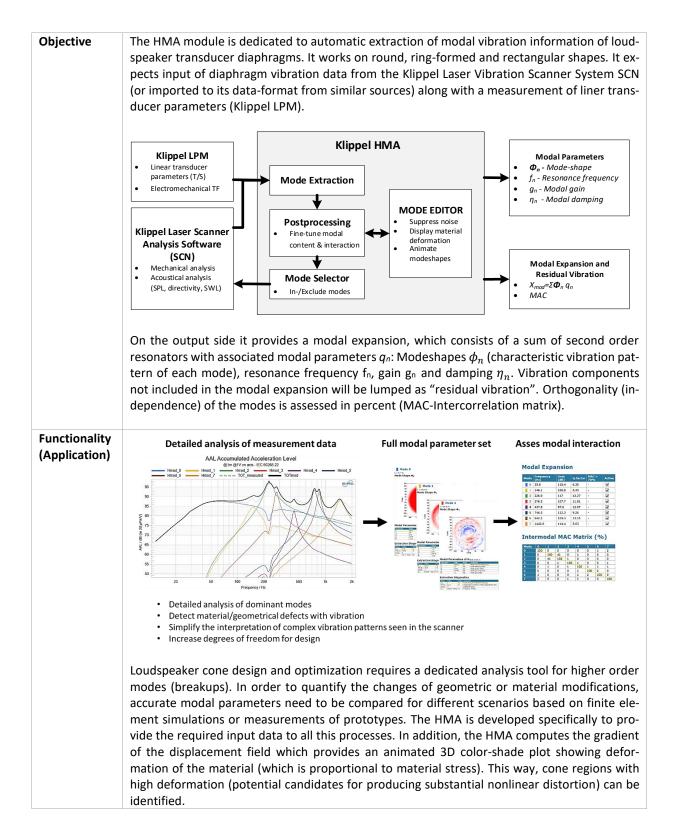
DESCRIPTION

Modal analysis is an optimal method for analysis of vibrating loudspeaker cones. The HMA decomposes the complex scanned vibration data into a set of second order resonators with associated mode-shapes (characteristic vibration-patterns). Studying the properties of these resonators (modal parameters) is highly valuable for the assessment of the mechano-acoustical performance. An even more detailed insight on how changes in these modal parameters influence the total response can be gained by studying the modal expansion, i. e. the identified set of transfer functions and mode shapes. The HMA allows including or excluding sets of modes from the accumulated expansion to study these effects. HMA is designed to integrate smoothly with measurements by the Klippel Vibration Scanning System (SCN). Data import from Polytec LDV devices is possible through additional optional bridge-modules (POLY2SCN).

Article number

1001-111

Higher Modal Analysis - HMA (Pre-Release)


1 Principle

ole	S60

1	Principle	. 3
2	Components of the HMA Module	. 4
3	Higher Order Modal Analysis	. 5
4	Input parameters (setup)	. 7
5	Measurement Results	. 8
6	Application/Diagnostics	12

1 Principle

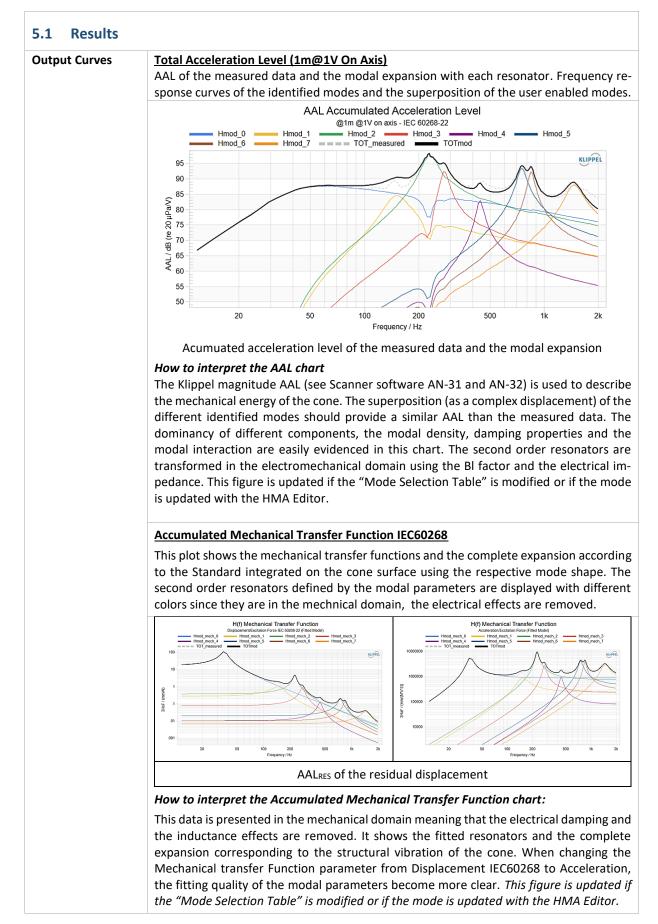
2 Components of the HMA Module

HMA Software	Measurement module for conducting Higher Order Modal Analysis		
SCN Laser Scanning Vibrometer Analysis Software	Analysis software for vibrometric laser data		
2.2 Additional com	ponents for self-perfor	med measurements	Spec#
Measurement device		Klippel Analyzer 3 (alternatively Distortion Analyzer 2) is the hardware platform for the measurement modules performing the gen- eration, acquisition and digital signal pro- cessing in real time.	H1 H3
LPM – Module	Eedrical impedance	Module to identify the electrical and me- chanical parameters of electro-dynamical transducers by measuring the voltage and current at the speaker terminals.	S2
rRF - Module	Significanti (Currat 2)	The Transfer function (TRF) is a dedicated PC software module for measurement of the transfer behavior of a loudspeaker.	S7
Laser Scanning Vibrome- ter Hardware (SCN)	RATE CHARGE	The Scanning Vibrometer (SCN) performs a non-contact measurement of the mechani- cal vibration and the geometry data of cones, diaphragms, panels and enclosures.	C5 (2510 004)
2.3 Alternative wa	ys to gather SCN/LPM d	ata – 2SCN bridge product family	Spec#
POLY2SCN Module		Module for importing surface vibration data to Klippel SCN format.	S45

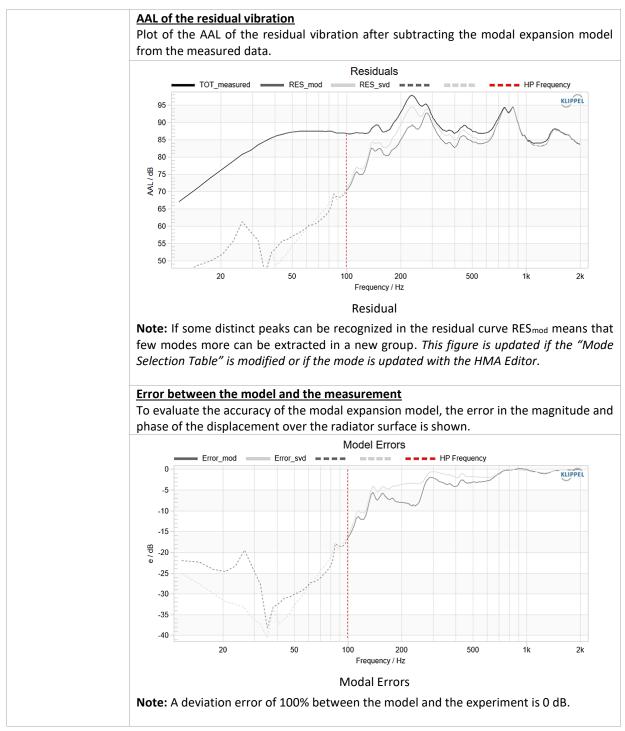
3 Higher Order Modal Analysis

3.1 Principle Principle The electromechanical transfer function (voltage displacement) H_x measured at each scanning point, is transformed into the pure mechanical transfer function $H_{x/F}$ via the Bl factor and the electrical impedance of the transducer. $H_{X/F}(\omega) = H_X(\omega) \frac{Ze(\omega)}{Bl}$ The HMA assumes that the vibration field measured on the transducer surface $X(r,\omega)$, can be represented by the superposition of the dominant modes. $X(r,\omega) = \sum_{n=1}^{\infty} \varphi_n(r) q_n(\omega)$ At each point **r** on the surface the displacement is the product of the mode shape $\varphi_n(r)$ and $q_n(\omega)$ the modal resonator $q_n(\omega) = \frac{g_n}{\omega_n^2 - \omega^2 + j\eta_n \omega_n^2}$ described by the following parameters, ω_n the resonance frequency, η_n the modal damping factor and g_n the modal complex gain. The goal of the HMA module is to extract the modal parameters and the mode shapes of the loudspeaker by means of an automatic frequency windowing, singular value decomposition and circle fitting processes. **Analysis Process** 3.2 Vibrometer A detailed scanner data with enough frequency and spatial resolution is required for accurate Scan modal parameter extraction. **TRF Setup:** HMA needs precise information in the lower frequency range. Therefore the following Settings have to be considered. The **frequency range** should include all relevant resonances, especially the piston mode resonance with a margin of at least 1 octave. Usually a scanning range of 10 Hz to 10000 Hz (woofers), for micro speakers from 100 Hz is sufficient. Resolution: 5.86 Hz or lower 0 Averages: 4 or more, depending on the signal to noise ratio (optical acces to dia-0 phragm). More can be required for microspeakers placed under screened cases 0 Shaping: 6-9 dB/oct. for sufficient SNR on the voice coil displacement at high frequencies. Postprocessing settings: smoothing and log-reduce to: 60 points/oct. LPM Magnitude of Electrical Impedance Z(f) Lumped parameter model Measure-For identification of the piston 200 ment mode vibration of the loud-180 speaker the linear parameters 160 are required. Ohm 140 The Thiele-Small parameters 120 mpedance Magnitude measured with the LPM module 100 provide the mechanical infor-80 mation of the piston mode and 60 the characteristics of the elec-40 trodynamic motor. 20 10 Frequency / Hz

Modal					
Extraction	Extraction				
	X_{0} X_{res} $Peak Detection on AAL_k no f_k$ $Group Mode Identification$ X_{mod} $Expansion X_{mod} = \Sigma\Sigma\phi q$				
	Postprocessing Modal Interaction diagnostics acoustics cancelations nonlinear cone vibration Pool with all extracted Modes				
	The HMA analyses the Accumulated Acceleration Level $AAL(\omega)$ on the driver surface and extract the dominant modes as prominent peaks. Once this process is finished, the modal displacement is synthetized and subtracted from the measured displacement producing the residual vibration to be used in the new extraction. The initial group $k=0$ takes the total measured displacement X_0 which is used to compute the AAL and to find the dominant peaks stored at the resonance frequencies \mathbf{f}_k which are the inputs of the Group Mode Identification which computes the modal parameter vector $\mathbf{P}_{\mathbf{K}} = [\mathbf{f}_n, \mathbf{\eta}_n, \mathbf{g}_n, \mathbf{\phi}_n]^{\mathrm{T}}$. This vector comprises the resonance frequencies \mathbf{f}_n , damping factors				
	η_n , complex gains g_n and mode shapes φ_n of the n^{th} extracted modes of the group. The extracted parameters are used to synthesize the modal displacement X_{mod} by the superposition of the $n=1,2,,N_{dom}$ modes of the different groups $k=1,2,,K_L$. This process is repeated according to the number of groups selected by the user.				
Postprocessing and link with SCN software	The HMA includes different tools to analyze the extracted modes. Acoustic cancellations and directivity are affected by the interaction of the structural modes. This process can be significantly simplified and clarified by investigating the effect of the superposition of few dominant modes. To study this, include and exclude modes from the modal expansion in the Mode Selection Table that is presented after the extraction. Afterwards, the result can be exported from HMA and the radiation effects analyzed in the SCN software.				
	In order to improve the quality of the extracted modes, the HMA editor provides a Zernike transform noise-suppression of the experimental data, which is functional for round speaker shapes. It also provides the regions of the cone exhibiting large material deformations causing nonlinear distortion on the acoustic pressure.				


4 Input parameters (setup)

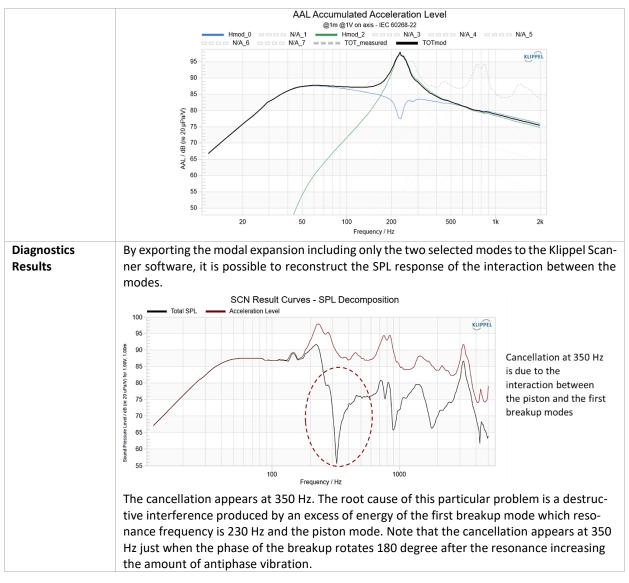
4.1 Input


	Parameter Name	Parameter type	Description
Input Parameters	LPM	Link	Loudspeaker motor and Mechanical transfer function determine the model
Input Files	Exported SCN file*.sce in SCN data-container	Link	Exported Klippel Scanner interpolated vibra- tion/geometry data in ASCII file format (.sce). See SCN manual for details. During the setup process, this file will be loaded into an SCN data container operation stored in a dBLab da- tabase.
Input Variables	Diaphragm shape	Check box	Select the entire diaphragm, ideally including a small portion of the surrounding rigid enclo- sure: - Circular - Rectangular - Ring (coaxial units)
Input values	Diaphragm dimension	Input Value	 Determine the size of the diaphragm Radius (r): Circular Rectangular (<i>I</i>, <i>w</i>): length and width Ring, Internal and external Radius: r_i and r_e
	High pass frequency	Input Value	Avoid HMA to extract low frequency peaks (ar- tifacts) as valid modes.
	Window Peak	Input Value	Value in dB used to determine the lower and upper frequencies of the window. Limit where the amplitude of the AAL curve decays this value at both sides of the resonance frequency.
	Modes per Group	Input Value	Maximum number of modes attempted to be extracted on each group
	Total Groups	Input Value	Total number of groups to be extracted
	Fine tuning Method	Select list	Selection between two methods
			- AAL based
			- Full complex displacement

S60

5 Measurement Results


Summary of all the extracted modes. This table allows the user to activate and deactive different modes to be included in the expansion. Modal Expansion 1 146.1 2 226.9 1 146.1 2 226.9 1 146.1 2 226.9 3 745.5 1 142.2 4 437.8 97.6 1207 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 144.2 1 100 1 100 1 144.2 1 100 1 120 1 100 <	Output Windows	Mode Shape and res			ith the sau	ne Klinn	el SCN color s	cale Tak		
Model Parameters of Hundymethy2Nodel Parameters of Hundymethy2The Total State St				-						
Image: constraint of the second sec							-	_		
Image: state of the state		80 60 40 20 -		Paramete fn n Qn	r Value 226.85 .04 12.27 116.95	Units Comm Hz Modal n/a Modal n/a Modal dB Modal	ent resonance frequency damping factor quality factor gain magnitude			
Image: state of the state				Extrac	tion Diagno	ostics				
Termin Mode shape and resonator parameters plot and table Output Parameters Mode Selection table Summary of all the extracted modes. This table allows the user to activate and deactivate different modes to be included in the expansion. Modal Expansion Mode Selection (dt) Mode Selection Table and Intermodal MAC Matrix Mode Selection Table and Intermodal MAC Matrix		-40 -60 -80 -100 -120		Name V Esvb 2 MAC (fn) Group 1	Value Units 25 % 18.74 %	Circle fitting err Mode shape cor fn Extraction grou	rrelation on total displacement a	ət		
Mode Selection table Summary of all the extracted modes. This table allows the user to activate and deactivat different modes to be included in the expansion. Modal Expansion Mode Selection table Image: Second Sec		-100 -50	X [mm]							
Summary of all the extracted modes. This table allows the user to activate and deactive different modes to be included in the expansion. Modal Expansion 		Mo	de shape and re	esonator pa	arameters	s plot an	d table			
different modes to be included in the expansion. Modal Expansion 1000 35.64 (12) 118.4 118.4 118.4 1227 - 1 2 226.9 117 1227 - 2 2 226.9 117 2 226.9 117 2 226.9 1207 - Q 4 437.8 97.6 1207 - Q 4 437.8 97.6 1207 - Q 5 746.5 112.3 9.26 Q Thetermodal MAC Matrix (%) Mode 100 1 1 0 Mode Selection Table and Intermodal MAC Matrix Mode Selection Table and Intermodal MAC Matrix	Output Parameters	Mode Selection tabl	e							
different modes to be included in the expansion. Modal Expansion 1000 35.8 1 146.1 106.8 3.43 -	-			. This table	allows th	e user to	o activate and	deactiva		
Modal Expansion Mode frequency (Hz) fills 4 6.35 1 AC> 70% Ative 1 146.1 106.6 3.43 - Image: Colspan="2">Image: Colspan="2" Colsp										
Image: constraint of the second state of the second st				•						
1 146.1 106.8 3.43 - \checkmark 2 226.9 117 12.27 - \checkmark 3 276.5 107.7 11.81 - \checkmark 4 437.8 97.6 12.07 - \checkmark 5 746.5 112.3 9.26 - \checkmark \checkmark 6 842.2 109.3 13.15 - \checkmark \checkmark 7 1442.6 114.4 5.03 - \checkmark \checkmark 9 0 0 0 0 1 2 0 141.4 5.03 - \checkmark \checkmark \checkmark \checkmark \checkmark 9 0 0 0 0 0 1 0 0 0 1 0 0 0 1						MAC > 70%				
12226.911712.27- \checkmark 3276.5107.711.81- \checkmark 4437.897.612.07- \checkmark 5746.5112.39.26- \checkmark 6842.2109.313.15- \checkmark 71442.6114.45.03- \checkmark Intermodal MAC Matrix (%)Mode010000100110002041101001201101111401001112001100100300110012001100120011001300110012001100130011001401001103001100140100110300110014001								-		
Image: A degree of correlation between the model Image: A degree of correlation between the model						-				
1 5 746.5 112.3 9.26 - \checkmark 6 842.2 109.3 13.15 - \checkmark \checkmark 7 1442.6 114.4 5.03 - \checkmark \checkmark Intermodal MAC Matrix (%) $\frac{1000}{0}$ $\frac{1}{0}$ $\frac{2}{0}$ $\frac{3}{0}$ $\frac{6}{0}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{3}{100}$ $\frac{6}{0}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{3}{100}$ $\frac{6}{0}$ $\frac{1}{10}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{100}$ $\frac{1}{10}$ <						-				
Image: height of the second state in the second state						•		_		
7 1442.6 114.4 5.03 - \checkmark Intermodal MAC Matrix (%) $\frac{1000}{100}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{5}{2}$ $\frac{6}{1}$ $\frac{7}{2}$ $\frac{1000}{1}$ $\frac{10}{100}$ $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{100}$ $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{1}$						-		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	0 0 1	100	1	0	0 1	_		
Z 0 0 1 1 0 0 100 Mode Selection Table and Intermodal MAC Matrix Note: The Intermodal MAC matrix shows the degree of correlation between the mod							2 0	_		
Mode Selection Table and Intermodal MAC Matrix Note: The Intermodal MAC matrix shows the degree of correlation between the mod							100 0 0 100			
Note: The Intermodal MAC matrix shows the degree of correlation between the mod			I							
		10								
		Note: The Intermoda	al MAC matrix sl	hows the d	degree of	correlat				
		Note: The Intermoda	al MAC matrix sl	hows the d	legree of	correlat	ion between			
		Note: The Intermoda	al MAC matrix sl	hows the c	degree of	correlat				
		Note: The Intermoda	al MAC matrix sl	hows the d	degree of	correlat				
		Note: The Intermoda	al MAC matrix sl	hows the c	degree of	correlat				
		Note: The Intermoda	al MAC matrix sl	hows the d	degree of	correlat				


Postprocessing options	Global Fine tuning of Parameters Extracted Modal Parameters are optimized based on the superposition interaction of the neighboring modes. The following wwo different are tuning methodes can be selected in the HMA: • Full complex displacement • AAL based. HMA Mode Editor Graphical User Interface use to investigate the mode shapes, improving using advanced image processing transformations. Computation of the material deformation on the surface.	oproaches of fine
	Klippel HMA Mode Editor -	
	Klippel HMA Mode Editor	?
	Extracted Vibration Klippel HMA Mode Editor	
	Select Data: Mode 2 (227Hz) 👌 To execute: Click the "Select Data" field / Press enter ("Frequency")	
	Visalization Diplacement Deformation Amplitude Enhancement Legension Order (Smoothing) 1 1 + Expension Order (Smoothing) 1 2 + Suppressed noise: 0.17 % Animation Update Mode	
Export Files	Measured data *.sce Klippel Scanner file containing the m formed with the BI and the electrical imped the driver	
	Modal Expansion*.sce Klippel Scanner file containing the syn ment based on the modal expansion	thetized displace-
	Modal Residual *.sce Klippel Scanner file containing the ment after reducing the modal expansion fredata	-

6 Application/Diagnostics

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: June 09, 2021

KLIPPEL Analyzer System