FEATURES
- Identifies dominant root cause automatically
- Distinguishes mass, stiffness and Bl problems
- Locates imbalances on the diaphragm
- Clear view on severity and excitation
- Based on fast scanner measurement

BENEFITS
- Cope with voice-coil rubbing
- Counteract root causes of rocking
- Detect systematic production problems
- Assess asymmetric acoustic loads
- Optimize speaker stability

DESCRIPTION:
The RMA module provides thorough analysis of rocking modes. It automatically analyses the rigid-body tilting motion of loudspeaker diaphragms to
- Quantify the severity of a rocking mode problem
- Identify the contributions of mass, stiffness and Bl imbalances in the excitation of rocking modes
- Indicate the position of the respective centers of imbalances on the diaphragm
- Derive the modal properties (damping, resonance frequency, gain) of each rocking resonator

All important results are clearly summarized in a single result window. This information conforms the basis of the root cause analysis required for problem fixing and design improvements.

As input data, the module requires a sparse and fast (10-15 min) laser-scanner measurement and a linear parameter measurement (LPM). The vibrometric data can be directly used from the Klippel Laser Scanner System SCN or imported from finite element analysis via FEM2SCN or Polytec LDV devices via POLY2SCN.

Article number

1001-108
CONTENT

1 Principle - Overview .. 3

2 Required components – How to get started .. 6

3 RMA Root cause identification – How it works ... 7

4 Setup parameters (input) ... 9

5 Measurement results (output) .. 10

6 Application examples / Use cases .. 15
1 Principle - Overview

Why this module exists

The market for portable devices including headphone and microspeaker transducers is constantly growing. The suspensions of such devices usually have to be constructed relatively simple due to restrictions of space and cost. Though the small diaphragm sizes may impose relatively large driving amplitudes, which in combination frequently triggers problems with rocking modes – undesired tilting motions of the diaphragm. These are usually highly undamped with large Q-factors, triggered already by tiny imbalances in the design.

Since the amplitude of the tilting motion scales with voice-coil excursion and coil-gaps are narrow for efficiency reasons, the voice-coil will at a certain level hit the magnet, causing excessive impulsive distortion. The rubbing of the coil along the magnet wall also quickly breaks the coatings of the wires and causes the speaker to fail. This imposes strong limitations of usable output and lifetime of the product.

With the RMA module, these undesired effects can be analyzed thoroughly, allowing the designers and manufacturers to take the needed actions to improve the driver performance and quality with designs that are just right for the task.

Objective

The Rocking Mode Analysis (RMA) uses vibration data from a non-dense scanner measurement and the linear parameters of a loudspeaker driver to perform complete diagnostics of rocking modes.

The user provides the RMA module with input data consisting of a linear parameter measurement, the distributed vibration scan data of the diaphragm and processing information (relevant analysis frequency range and diaphragm geometry). The rest of the process runs automatically.

As a result, the module provides information about the energy levels of the rocking, alongside with magnitude of the unbalance forces produced by mass, stiffness and BL asymmetries. A complete set of modal parameters associated to the transfer resonators between these forces and the final tilting energy of the diaphragm (symptoms) is computed.

Symptoms and root causes of rocking modes

When an engineer detects rocking modes in laser-scanned loudspeaker data, the viewing software of the Klippel Scanning Vibrometer System SCN can be used to assess magnitudes and directions of the rocking. Raw-data from other sources of distributed vibration data like FEM (COMSOL, PAFEC) or Polytec LDV devices can be imported via our bridge tools FEM2SCN and POLY2SCN. A good approach is to check the Quadrature component and the circular decomposition provided by the SCN software.

In the depicted example below, the quadrature component of the accumulated diaphragm acceleration level (AAL) clearly shows two strong peaks produced by the rocking modes of the analysed headphone. There are always two rocking modes whose main axes of tilting motion are oriented orthogonal to each other. These modes may though occur so close in frequency that they appear to be a single peak in the AAL plot.

Inspecting the vibration shape in this manner allows assessment of how severe the problem is, but we do not yet have any information about the root causes for the rocking. This is where RMA comes into play. If all mechanical parameters (mass, stiffness, damping, electro-
mechanical force factor) were distributed perfectly symmetrical on the diaphragm, no rocking would occur. Excitation only happens due to asymmetry (“imbalance”) of these parameters. If one side of the diaphragm is heavier than the other, then it is held back when the voicecoil moves the diaphragm in and out, creating asymmetrical forces. The same applies when the suspension is slightly stiffer on one side than on the other. Or when the motor does not push evenly on both sides. In all these cases, a tilting of the diaphragm (“rocking motion”) is induced. The imbalance causing it can be described by the distance and angle at which the center of gravity (or stiffness or force factor respectively) is offset from the center of the speaker. The Rocking Mode Analysis module RMA from Klippel determines these imbalances, indicates their location on the diaphragm and quantifies the resulting excitation strength.

Analysis of root causes for rocking modes with RMA

First RMA identifies the direction in which the vibration of the two modes is oriented and determines the excitation terms acting on them. After splitting up the excitation forces into the contributions from each identified imbalance, both modes are summarized in the Combined Force Ratio CFR at the mean frequency between the two rocking resonances. This allows the engineer to assess the rocking problem globally, for both modes combined. The ranking of the CFR magnitude unveils, which root cause (imbalance of mass/stiffness/force factor) causes the strongest excitation of the rocking. This root cause should be worked on first in order to improve the speaker. Finally, the RMA imbalance diagram indicates the position of the center of each imbalance on the diaphragm. The engineer will find guidance in which direction to search for the underlying mechanical issue, which might be caused either in the R&D design itself or by imperfections in production.

The analytical information described here is conveniently gathered in one single result window, providing a clear and simple overview over all relevant information.

Workflow for analysis of rocking modes with Klippel RMA
Benefits, explained	With RMA you can:
	• **Reveal causes for Rub&Buzz**
	By knowing the root cause of the coil rubbing, it is possible to perform design changes to reduce the imbalances. This helps to prevent QC rejected units.
	• **Counteract the problem**
	The Combined Force Ratio magnitude helps to identify the dominant root cause. Using the information provided by the RMA imbalance diagram, its contribution can be counteracted.
	• **Detect systematic errors**
	Several samples can be measured after production to detect systematic errors, by looking for some defect pattern (same root cause at same direction). After the problem is found, it can be solved by adjusting the production process.
	• **Assess asymmetric acoustic loads**
	Performing parametric RMA measurements in vacuum and air, the effect of the acoustic load (mobile-phone ports, cases, back-holes in headphones, etc.) on the loudspeaker can be characterized to check for possible asymmetries or critical excitation conditions.
	• **Optimize loudspeaker stability**
	RMA measurements of different prototypes or FE simulations under different conditions can quantify the effect of parametric design changes on resonance frequencies and damping factors of the modal resonators.
	• **Detect possible problems at high amplitudes**
	Some drivers using robust suspension mechanisms against rocking modes can have resonator characteristics with very low damping. If the stiffness or motor imbalances appear at high amplitudes, the undamped resonator can boost the rocking excitation terms producing substantial tilting, which in terms can cause rub&buzz. RMA provides modal information to identify such cases.
Required components – How to get started

2.1 RMA analysis (minimum requirement, measurements externally provided)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Spec#</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMA Software</td>
<td>Rocking Mode Analysis software module for Klippel dB-Lab</td>
<td>S49</td>
</tr>
<tr>
<td>SCN Scanning Vibrometer Analysis Software</td>
<td>Analysis software for vibrometric laser data</td>
<td>C5 (2510-010)</td>
</tr>
</tbody>
</table>

2.2 Additional components for self-performed measurements

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Spec#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klippel Analyzer 3</td>
<td>(alternatively Distortion Analyzer 2) is the hardware platform for the measurement modules performing the generation, acquisition and digital signal processing in real time.</td>
<td>H1 H3</td>
</tr>
<tr>
<td>LPM – Module</td>
<td>Module to identify the electrical and mechanical parameters of electro-dynamical transducers by measuring the voltage and current at the speaker terminals.</td>
<td>S2</td>
</tr>
<tr>
<td>TRF</td>
<td>The Transfer function (TRF) is a dedicated PC software module for measurement of the transfer behavior of a loudspeaker.</td>
<td>S7</td>
</tr>
<tr>
<td>Scanning Vibrometer Hardware (SCN)</td>
<td>The Scanning Vibrometer (SCN) performs a non-contact measurement of the mechanical vibration and the geometry data of cones, diaphragms, panels and enclosures.</td>
<td>C5 (2510-004)</td>
</tr>
</tbody>
</table>

2.3 Additional alternative ways to gather SCN/LPM data

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Spec#</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM2SCN Module</td>
<td>Module to identify the electrical and mechanical parameters of electro-dynamical transducers from finite element simulations in COMSOL and PAFEC and for importing surface vibration data to Klippel SCN format.</td>
<td>Contact sales</td>
</tr>
<tr>
<td>POLY2SCN Module</td>
<td>Module for importing surface vibration data to Klippel SCN format.</td>
<td>S45</td>
</tr>
</tbody>
</table>
3 RMA Root cause identification – How it works

3.1 Principle

Rocking mode analysis is applicable for electrodynamic drivers operated at low frequencies. In this context, only the suspension parts are deformed under the effect of applied forces and moments, while the center part of the diaphragm remains undeformed. This assumption is fulfilled by all kinds of electro-dynamical transducers composed by a rigid diaphragm, voice coil and former attached to slightly softer suspension parts. In the case of micro-speakers and headphones, the diaphragm and the surround are made of the same material and the diaphragm needs to be deformed to allow the rotational degree of freedom. In these special cases the “diaphragm” will be regarded as the part of the surface which is vibrating with only negligible deformation.

3.2 Analysis Process

Vibrometer Scan

![Signal Y2 vs time (Channel 2)]

Fast scanner measurement (10-15 min) are suitable for RMA analysis.

The Rocking Mode Analysis is a post processing module applied to scanned vibration data. The difference between a normal “wideband” scan and an optimized rocking mode scan is that the latter needs less measurement points (rigid body motion). The module requires sufficient excitation at low frequencies (moderate shaping: 5 dB are recommended).

1. **Spatial Grid**: There is no need for many scanning points for the Rocking Mode analysis, so the count can be reduced to achieve shorter scanning time. For a rough scan about 60-100 points are suitable (10-15 minutes scan time). There should be at least 6 radiuses including the centre and an angle step size of 30 degrees. For better analysis a manual grid scan will be convenient.

2. **TRF Setup**: RMA needs precise information in the lower frequency range. Therefore the following settings have to be considered.

 - **The frequency range** should conceal a frequency range from at least one octave below fundamental piston resonance, up to 5000 Hz.
 - **Displacement**: Similar to the linear parameter measurement (LPM)
 - **Resolution**: 3 Hz or better
 - **Averages**: 4 or more, depending on the signal to noise ratio (optical access to diaphragm). More can be required for micro-speakers placed under screened cases
 - **Shaping**: 5 dB/oct, for sufficient voice coil displacement at lower frequencies and sufficient high-frequency S/N ratio
 - **Postprocessing Settings**: smoothing and log-reduce to: 40 points/oct.

LPM Measurement

![Electrical impedance](Ohm) vs Frequency [Hz]

Lumped parameter model

For identification of the piston mode vibration of the loudspeaker the linear parameters are required.

The Thiele small parameters measured with the LPM module provide the **mechanical information** of the piston mode and the characteristics of the electrodynamic motor.
Modal Analysis

At low frequencies, the complex vibration behavior of the loudspeaker can be fully described by the superposition of three normal modes:

- **The piston mode**: Associated to the transversal displacement of the voice coil x_{coil}. Produced by the excitation of the modal resonator $H_0(f)$ by the symmetric force F_0 generated on the electrodynamic motor comprising the electrical impedance Z_e and the force factor Bl acting on the electrical current I. The mode shape $\Phi_0(r_c)$ transforms the lumped state variable x_{coil} into the distributed displacement contributing on the total vibration x_n.

- **Dominant rocking mode**: Associated to the rotation of the loudspeaker diaphragm around a rotation axis (crossing the geometrical center of the driver) τ_1. This tilting angle is generated by the excitation of the modal resonator $H_1(f)$ by the total dominant tilting moment μ_1,T composed by the excitation terms, μ_1,M, μ_1,K and μ_1,Bl generated by mass, stiffness and Bl imbalances respectively. The mode shape $\Phi_1(r_c)$ transforms the lumped state variable τ_1 into the distributed displacement contribution of the mode in every point of the diaphragm, which is part of the total vibration x_n.

- **Second rocking mode**: Analogous to the dominant rocking mode, but usually less excited and for this reason of less importance. Denoted by subindex 2 in above diagram.

Knowing the excitation moments due to each of the root causes and the properties of the modal resonators form the basis of rocking modes diagnostics.

More information about the lumped parameter model can be found in

4 Setup parameters (input)

4.1 Input

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPM</td>
<td>Link</td>
<td>Loudspeaker motor and mechanical transfer function determine the piston mode of the model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Re: Electrical Resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le: Voice coil Inductance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L2$: Para-Inductance of the voice coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R2$: Electrical resistance due to eddy currents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bl: Force factor (Bl product)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M_{ms}: Mechanical mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K_{ms}: Mechanical stiffness of the suspension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{ms}: Mechanical resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ: Suspension creep factor</td>
</tr>
</tbody>
</table>

Input Files
- Exported SCN file*.*sce or SCN Datacontainer Operation
- Exported Klippel Scanner interpolated vibration/geometry data as ASCII file. See RMA Manual for details

Input Variables
- Diaphragm shape: Check box
 - Circular
 - Rectangular
 - Ring (coaxial units)

Input values
- Rigidly oscillating diaphragm dimension
 - Input Value
 - Part of the diaphragm that oscillates rigidly, without major deformation [e.g. measured in cross-section view of with Klippel SCN software]
 - Rigidly oscillating radius (>Circular)
 - Rigidly oscillating half-length and half-width (>Rectangular)
 - Rigidly oscillating internal and external Radius: r_i and r_e (>Ring)

Input values
- Analysis frequency range
 - Input Value
 - Minimum and maximum frequency for analysis and option to exclude eventually corrupted frequency range.
5 Measurement results (output)

5.1 Results

Output Curves

<table>
<thead>
<tr>
<th>Accumulated acceleration levels of each rocking modes. AAL₁,E and AAL₂,E.</th>
<th>Frequency curves corresponding to the “mechanical energy” of the two modes. To be displayed in dB-Lab window.</th>
</tr>
</thead>
</table>

Accumulated acceleration level of the rocking mode and each of the root cause contributions. A similar figure is generated for each mode separately and also as AAL_Rocking_Total for both modes combined.

How to interpret the AAL curves

The Klippel magnitude AAL (see Klippel Application Notes AN-31 and AN-32) is used to describe the mechanical energy of the cone. The RMA module performs a modal decomposition, which allows separating the total vibration as the superposition of three normal modes; the piston and the two rocking modes.

A stable driver should have a very small value of the dominant rocking energy AAL₁,T compared to the energy of the piston mode AAL₀ at the resonance frequency \(f₁ \) of the resonator. Note that the total rocking energy AAL₁,T is composed by the superposition of the contribution associated to the mass, stiffness and BL root causes on that mode each of the causes present a distinct curve shape. In this context, the total rocking energy will present similar curve characteristics as the dominant root cause, in the example above the stiffness imbalance produces a AAL₁,K (blue) that coincides with the total rocking energy at low frequencies. This figure is complemented with the Relative Rocking Level RRL presented in a table. It determines the proportion between the rocking energy of each root cause and the piston mode energy.

Output Diagrams

<table>
<thead>
<tr>
<th>Mode-Shape Diagrams for both rocking modes</th>
<th>Indicating the displacement pattern of each rocking mode, its main axis of vibration relative to coordinates of the Klippel Vibrometric Scanning System SCN and measurement points of the SCN grid.</th>
</tr>
</thead>
</table>
RMA Result

Window summarizing the most important global analytic parameters of RMA. Sequentially, the following questions are treated:

- How severe is the problem? This is measured by comparing the rocking vibration to the desired piston mode > RRL
- Which root cause deserves most focus in order to improve the analysed speaker? The combined excitation forces from both modes are compared to the piston mode. The ranking shows which root cause is dominant > CFR magnitude
- Where are the imbalances located? > Imbalance diagram

Severity: Relative Rocking Levels RRL

<table>
<thead>
<tr>
<th>Description</th>
<th>Frequency (Hz)</th>
<th>Direction (°)</th>
<th>RRL [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocking mode 1</td>
<td>293</td>
<td>1</td>
<td>-4.9</td>
</tr>
<tr>
<td>Rocking mode 2</td>
<td>323</td>
<td>91</td>
<td>-12.7</td>
</tr>
<tr>
<td>Piston mode</td>
<td>127</td>
<td>-</td>
<td>0 (± ref.)</td>
</tr>
</tbody>
</table>

Rocking excitation: Combined Force Ratio CFR

For \(f_m = 300 \) Hz, \(d_m = 15 \) mm

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value [%]</th>
<th>Dominant Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>CFR<sub>m</sub></td>
<td>.31</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>CFR<sub>r</sub></td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>CFR<sub>Bi</sub></td>
<td>.58</td>
<td>B-field Inhomogeneity</td>
</tr>
</tbody>
</table>

The contribution that induces the largest excitation force for rocking motion at \(f_m \) is most beneficial to improve ("dominant excitation").

Root causes: Imbalances

Offsets in the distributions of mass, stiffness and force factor from the geometrical center of the diaphragm.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Mark</th>
<th>Offset [mm]</th>
<th>Direction (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of Mass</td>
<td>(d_m)</td>
<td>○</td>
<td>0.09</td>
<td>214</td>
</tr>
<tr>
<td>Center of Stiffness</td>
<td>(d_r)</td>
<td>□</td>
<td>0.31</td>
<td>133</td>
</tr>
<tr>
<td>Center of BI</td>
<td>(d_{Bi})</td>
<td>◊</td>
<td>0.09</td>
<td>109</td>
</tr>
</tbody>
</table>

Location of the centers of imbalance (based on a simplified estimation of rotational stiffness)

RMA result window for a headphone with dominant BI problem: Note that the dominant root-cause (the one responsible for the largest excitation) might be different from the one showing the largest imbalance. The result window clearly indicates this. Note that root causes without major contribution will be excluded from identification, so this window might show less than three.
Details about each rocking mode separately, similar to the window “RMA result” (see above). On top of the window the respective modeshape is shown along with the modal resonance frequency and the main direction of tilting. The vibration response from each root-cause is given below in the Relative Rocking Level table. Afterwards, the excitation of the mode is analysed (Modal Force Ratio) and the dominant excitation parameter marked in color. Finally, the parameters describing the modal resonator H are stated. They describe the amplification and damping of the mode (compare section 3.2).

Rocking Mode 1 (Dominant)

Resonance frequency $f_1 = 293$ Hz, Orientation $\alpha_1 = 1^\circ$

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (measurement)</td>
<td>RRL$_{1,T,\text{total}}$</td>
<td>-4.9</td>
</tr>
<tr>
<td>Total (model)</td>
<td>RRL$_{1,T}$</td>
<td>-5.3</td>
</tr>
<tr>
<td>Mass</td>
<td>RRL$_{1,M}$</td>
<td>-9.1</td>
</tr>
<tr>
<td>Stiffness</td>
<td>RRL$_{1,K}$</td>
<td>-16.7</td>
</tr>
<tr>
<td>bl</td>
<td>RRL$_{1,\text{bl}}$</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

Severity: Relative Rocking Level RRL$_{1,E}$

The Modal Force Ratio MFR$_1$ for $d_{\text{tip}} = 15$ mm:

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>MFR$_{1,M}$</td>
<td>.3</td>
</tr>
<tr>
<td>Stiffness</td>
<td>MFR$_{1,K}$</td>
<td>.12</td>
</tr>
<tr>
<td>bl</td>
<td>MFR$_{1,\text{bl}}$</td>
<td>.57</td>
</tr>
</tbody>
</table>

Rocking Mode Parameters H

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance Frequency [Hz]</td>
<td>f_1</td>
<td>293</td>
</tr>
<tr>
<td>Relative Modal Gain [dB]</td>
<td>RG$_1$</td>
<td>41.5</td>
</tr>
<tr>
<td>Model Damping</td>
<td>η_1</td>
<td>.04</td>
</tr>
<tr>
<td>Modal Q-Factor</td>
<td>Q_1</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Note that the MFR measure above only shows the parameter that contributes with the largest excitation for this mode alone. The overall strongest root cause for both modes combined (shown in the CFR table, see above) might be a different one.
Output Parameters

Assessing rocking severity:
- $AAL_{n,E}$
- $RRL_{n,E}$

Vibration level AAL and Relative Rocking Level RRL of each rocking mode and root cause contribution

n: Mode Number (1, 2)

E: Excitation caused by mass (M), stiffness (K) or (BL) imbalance.

In dLab, vibration level AAL is given as diagram over frequency and RRL in provided in table format

Assessing excitation:
- MF_{RE}
- CF_{RE}

Ratio of tilting-excitation forces relative to the symmetric force of the voice coil. The forces are gathered by converting the tilting momentum μ into a pair of forces at the reference distance d_{ref}. By convention this distance is identical to the rigidly oscillating part of the diaphragm as specified by the user in the input property page.

\[MFR_{n,E} \text{: Modal Force Ratio describes the magnitude of the asymmetric forces exciting a particular mode at respective modal resonance frequency, compared to the piston mode.} \]

\[CF_{RE} \text{: Combined Force Ratio describes the magnitude of the excitation produced by the three root causes, relative to the piston mode. This output is computed based on the superposition of the forces from both modes at the mean frequency between the rocking resonators.} \]

Results are given as tables in dLab

Assessing the root causes (imbalance):
- d_{E}
- γE

Offset in mm and direction in degrees of the center of mass, stiffness and Bl distributions, relative to the center of the vibration scan which shall coincide with the center of the diaphragm.

Please note: The calculation of the offset distance d_{E} provided by RMA is based on a simplified estimation of rotational stiffness, which the values of d_{E} are directly proportional to. Since the geometry and parameters of the suspension design of the DUT are not known to RMA, this parameter can only be estimated roughly. Absolute values can be assessed when combining RMA with FEA tools capable of calculating exact rotational stiffnesses. The imbalance diagram can only show this simplified estimate of d_{E}. This restriction affects only d_{E} which might be scaled with a factor. The angles (direction) of the center of imbalance will still be correct.

Results are given in dLab as imbalance diagram and table (see above in result window “RMA Result”)

Modal resonator parameters:
- f_n
- R_{Gn}
- η_n
- Q_n

Describe the characteristics of the modal resonator, transfer path between the moments and the mechanical energy.

\[f_n \text{: Modal resonance frequency} \]

\[R_{Gn} \text{: Relative gain of the modal resonator at } f_n \]

\[\eta_n \text{: Modal loss factor} \]

\[Q_n \text{: Quality factor of the modal resonator} \]

Provided in table format in dLab
5.2 Result quality assessment

<table>
<thead>
<tr>
<th>Output windows</th>
<th>Error/Warnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output window summarizing the quality of the identification in three sections, checking the following:</td>
<td></td>
</tr>
<tr>
<td>• Is the specified section of the diaphragm oscillating without major deformation? This is required for the modal analysis to work flawlessly. (Rocking modes are rigid-body modes)</td>
<td></td>
</tr>
<tr>
<td>• Is the behavior of the piston mode in the linear parameter measurement congruent to the distributed laser vibration scan? This is important to assess whether the lumped parameters passed by LPM are useful for further processing by RMA.</td>
<td></td>
</tr>
<tr>
<td>• Did the rocking mode fitting algorithm of RMA come to a meaningful result? If this is not the case, then results shall not be trusted.</td>
<td></td>
</tr>
</tbody>
</table>

Along with these quality assessment measures, which are summarized by a color-coded grading, guidance is given how to improve the fitting quality in case of problems.

Errors/Warnings/Info

<table>
<thead>
<tr>
<th>Error</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning LPM/SCN Piston Mode Fitting Error is large</td>
<td></td>
</tr>
<tr>
<td>To improve this, try or check the following:</td>
<td></td>
</tr>
<tr>
<td>• Make sure that the selected LPM operation belongs to the scanned driver</td>
<td></td>
</tr>
<tr>
<td>• Make sure that LPM is measured in the centerpoint of the diaphragm and that this is exactly the same point as the center of your SCN measurement (preferably measure LPM directly on the SCN turntable, without moving OUT)</td>
<td></td>
</tr>
<tr>
<td>• Check TN settings in SCN setup to ensure that measurement displacement at transducer resonance frequency is roughly identical to displacement of LPM measurement.</td>
<td></td>
</tr>
<tr>
<td>• If all of the above steps are followed, the LPM data shall be included in the analysis in RMA setup.</td>
<td></td>
</tr>
<tr>
<td>Information LPM data source: Measured LPM</td>
<td></td>
</tr>
<tr>
<td>Information Full set of parameters (mass, stiffness and R) has been identified. Bi-unique symptom found on rocking mode: H1 [Yes] and H2 [Yes].</td>
<td></td>
</tr>
</tbody>
</table>

Result Quality Assessment

RMA performs the following self-tests to assess how reliable the results are. The overall reliability is determined by the lowest ranking.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value (%)</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial SCN Plate-Fitting Error</td>
<td>e_{SCN}</td>
<td>7</td>
<td>Good</td>
</tr>
<tr>
<td>LPM/SCN Piston Mode Fitting Error</td>
<td>e_{LPM}</td>
<td>31</td>
<td>Poor</td>
</tr>
<tr>
<td>Rocking-Mode Modeling Error</td>
<td>$e_{RMA,Model}$</td>
<td>0</td>
<td>Good</td>
</tr>
</tbody>
</table>
6 Application examples / Use cases

6.1 Headphone with severe stiffness problem

A measured headphone presents a critical rocking mode at 151 Hz. Its main symptom can be detected as a sharp peak in the quadrature component of the SPL related decomposition of the AAL in the Klippel scanner analysis software:

![Symptom of the rocking: Large peak in the AAL quadrature component](image)

As the quadrature component provides valuable information about the direction and the energy of the rocking mode, it does not inform about the causes of this undesired behaviour. The problem can be only be solved by means of a root cause analysis (diagnostics) based on RMA measurement.

The RMA module gathers the most important information in the window “RMA Result”. The user is guided through the process step by step. In the first step, the information that we already have read out by hand from the SCN view above is summarized. The table in the section “Severity: Relative Rocking Levels” informs us, that the dominant mode is vibrating 9 dB stronger than the piston mode (which is just what we see in the AAL plot above), which confirms that we indeed have a major problem. We are also informed about direction and resonance frequency of the modes. The piston mode is given as a reference.

<table>
<thead>
<tr>
<th>Description</th>
<th>Frequency [Hz]</th>
<th>Direction [°]</th>
<th>RRL [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocking mode 1 (Dominant)</td>
<td>151</td>
<td>9</td>
<td>6.9</td>
</tr>
<tr>
<td>Rocking mode 2</td>
<td>129</td>
<td>99</td>
<td>-9.5</td>
</tr>
<tr>
<td>Piston mode 0</td>
<td>79</td>
<td>-</td>
<td>0 [- ref.]</td>
</tr>
</tbody>
</table>

Step 1: Overview of the symptoms of the rocking

Yet RMA has not given us a lot of new knowledge, but this changes drastically with step 2: Here the root causes and the modal resonator characteristics required to describe the rocking of the headphone are analyzed. In the current example RMA indicates that the problem is caused by a major stiffness imbalance. This result is shown in the respective section “excitation” of the result window “RMA result”.

KLIPPEL Analyzer System
Step 2: The excitation table for the combined force ratio CFR shows clearly that the suspension of the headphone is the dominant effect. The magnitude of the forces driving the rocking are almost 3% of the piston-mode force.

We can see the contribution of the stiffness effect on the response of the driver by looking into the Accumulated Acceleration Level diagram of the dominant rocking mode 1. The curve associated with the stiffness asymmetry (blue line) provides the largest contribution to the amplitude of the rocking mode at its resonance frequency ($f_1 = 151 \text{ Hz}$). We can also see the influence of the mass just below (green line). Since the effects of mass and stiffness add up, generating the black curve, we can conclude that mass and stiffness imbalances work in phase, which makes the problem even worse.

To understand the exceptionally high level of this rocking mode, we have a look into the diagnostics table in result window “Rocking Mode 1”. It indicates that the Q-factor of the rocking resonator is 37 (very undamped), which is boosting the effects of small imbalances to the observed large amplitudes.

Since we already know that the majority of the problem is associated with the stiffness asymmetry, we would like to know the direction of the center of imbalance on the diaphragm. The approximate location of the stiffness center is shown the window “RMA Result” in the section “Root causes”. It indicates clearly, in which direction the harder side of the suspension is oriented. For convenience, the RMA imbalance diagram visualizes this result.
Step 3: RMA imbalance table and plot indicating an offset in the center of stiffness of 0.9 mm (rigidly oscillating diaphragm radius = 16mm) at 21 degrees angle relative to the position of the speaker on the SCN turntable.

Starting from the symptoms and based on a fast scanner measurement, the RMA module unveils the relationship between the symptoms produced by the rocking mode (peak in quadrature component) and the root cause of the problem (stiffness asymmetry located at 21°). The excess of tilting of the voice coil in the gap will produce Rub&Buzz producing non-acceptable impulsive distortion already at relatively low amplitudes.

With the diagnostic information available now, the mechanical reasons for the stiffness-imbalance can be assessed by the engineer who shall analyse the design and production process for inhomogeneities in the indicated direction.

Find explanations for symbols at:
http://www.klippel.de/know-how/literature.html

Last updated: March 18, 2020