
TBM - Tone Burst Measurement

Software of the KLIPPEL R&D and QC SYSTEM (Document Revision 2.0)

FEATURES

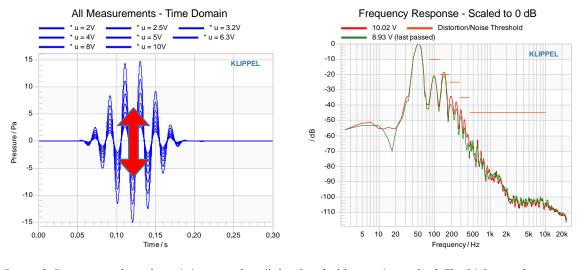
- Maximum short-term SPL (ANSI/CEA)
- Harmonic distortion versus frequency and amplitude
- Sinusoidal transient stimulus (cycles, band-width)
- Complex compensation of sound reflections in non-anechoic environment (room)

DESCRIPTION

The TBM Module uses a transient sinusoidal burst to measure the peak SPL and harmonic distortion versus frequency and amplitude according to Standards ANSI/CEA-2010, ANSI/CEA-2034 and IEC 60268-21. If the distortion exceeds a user defined threshold, the input amplitude will be not increased to prevent a damage of the device under test. A second state variable (displacement, voltage, current) can be measured simultaneously. Acoustical measurements can be performed in a non-anechoic environment by compensating the room reflections by inverse filtering of the microphone signal.

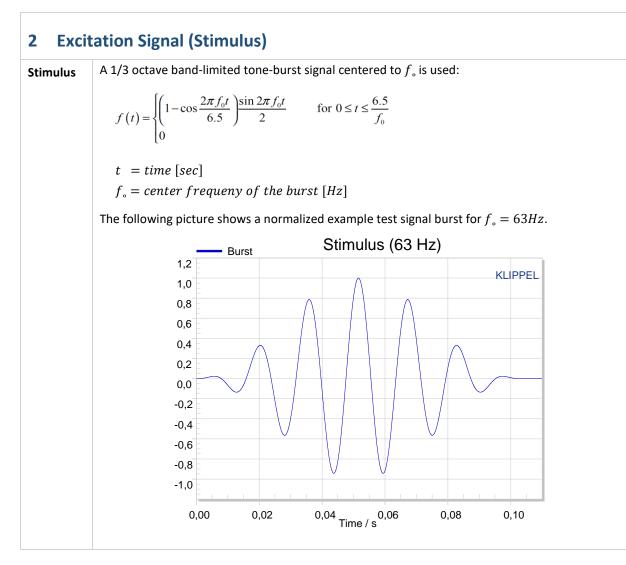
Article number

1001-109

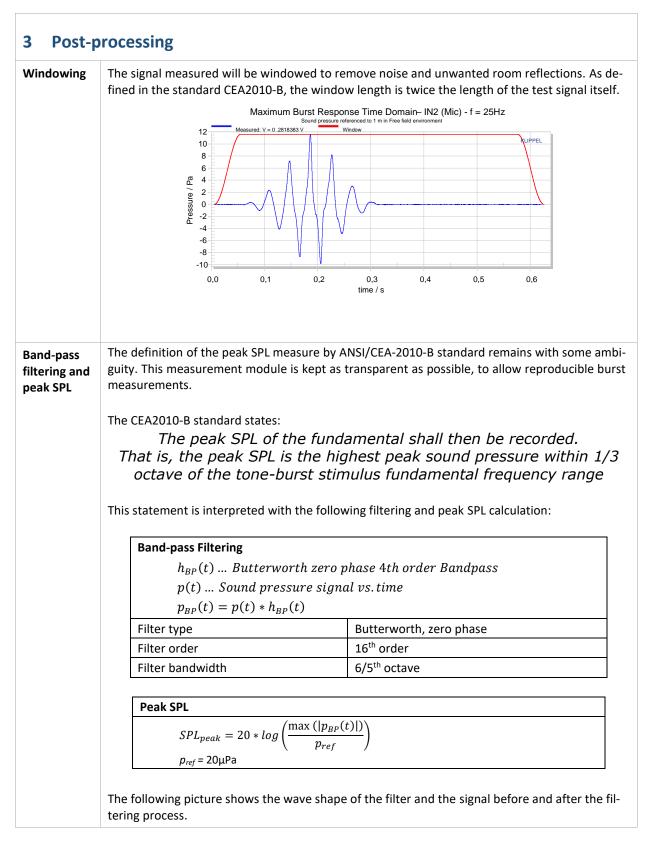

CONTENT

1	Principle	2
2	Excitation Signal (Stimulus)	3
3	Post-processing	4
4	Requirements	6
5	Inputs	7
6	Result Windows	10
7	References	14

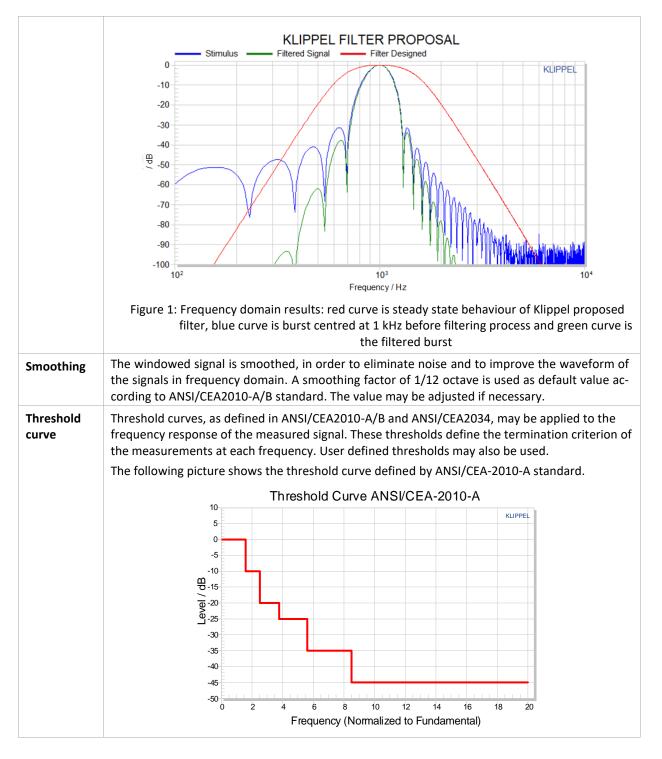
SДZ


1 Principle

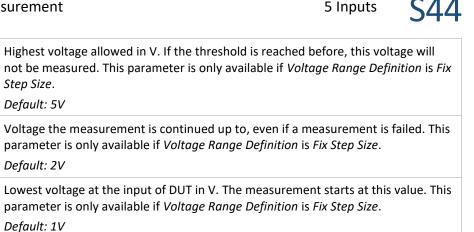
The Burst measurement module is designed to run band limited burst measurements versus input voltage and frequency. The results are evaluated in frequency domain, to measure the generated distortion. A threshold curve is applied to the 1/12th octave band smoothed spectrum, to define a maximum permissible distortion generation.



For each Frequency, the voltage is increased until the threshold curve is reached. The highest voltage not reaching the threshold curve is used to calculate the peak level of this state signal (Peak SPL in CEA2010) In parallel it is possible to monitor a second state signal, to investigate the displacement or current state signal.



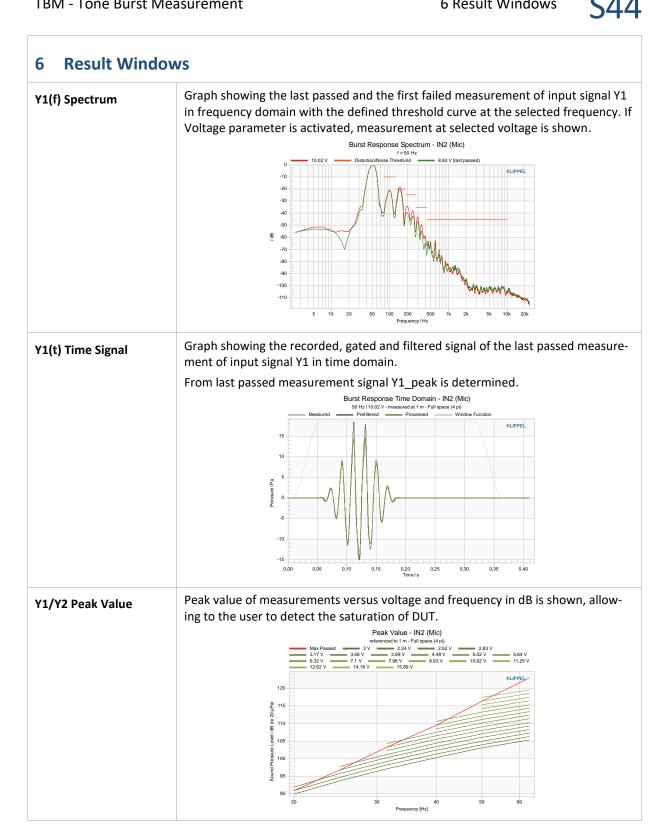
S44


4 Requirements					
4.1 Hardware					
Analyzer	The Distortion Analyzer or the Klippel Analyzer 3 are used as the hardware to perform the measurement.				
Microphone	<i>[optional]</i> Free field microphone with omnidirectional directivity characteristic over the desired measurement bandwidth.				
Amplifier	[optional] KA3 Amp-Card or external audio amplifier with a flat frequency response over the desired measurement bandwidth				
Laser Dis- placement Sensor	[optional] A high precision laser displacement sensor may be used to capture the mem- brane movement.				
Computer	A personal computer is required for performing the measurement.				
4.2 Software					
dB-Lab	Project Management Software of the KLIPPEL R&D SYSTEM. Requires at least version 210.450.				

S44

5 Inputs

Output at:	Point where the voltage defined will be applied to the system. Possible values:							
	- OUT1 - OUT2							
	- Speaker 1 terminals (via OUT1) - Speaker 1 terminals (via OUT2)							
	 Speaker 2 terminals (via OUT1) Speaker 2 terminals (via OUT1) Speaker 2 terminals (via OUT1) 							
	Default: Speaker 1 terminals (via OUT1)							
Input Signal Y1	State signal which will be analyzed, und whose results will be compared with threshold. Possible values:							
	- IN1 (Mic) - IN2 (Mic)							
	- Voltage Speaker 1 - Voltage Speaker 2							
	- Current Speaker 1 - Current Speaker 2							
	- Displacement							
	Default: IN1 (Mic)							
Input Signal Y2	State signal which will be measured simultaneously with state signal 1. Possible values:							
	- Off - IN1 (Mic)							
	- IN2 (Mic) - Voltage Speaker 1							
	- Voltage Speaker 2 - Current Speaker 1							
	- Current Speaker 2 - Displacement							
	Default: Off							
Bluetooth Mode Apply a longer measurement time to compensate the delay produced by v devices.								
Measurement Setup – IN	1 (Mic) (same for IN2 (Mic))							
IN1 Input Sensor	Select the input sensor used in the measurement. Possible values:							
•	- Managed by dBLab							
	 Microphone (Custom Sensitivity) 							
IN1 Microphone	Microphone sensitivity defined in mV / Pa							
Sensitivity								
Sensitivity	Default: 50mV / Pa							
IN1 Meas. Distance [m]	Measurement distance between microphone and DUT in meter.							
	Default: 1m							
IN1 Environment	Measurement environment of microphone. Possible values:							
	- Full space (4 pi)							
	- Half space (2 pi)							
	Default: Full space (4 pi)							
IN1 (Mic) Room Correc-	Correction filter to compensate the room influence for In-Situ measurements.							
tion Curve								
INIA (NAio) NAioromhana	Nienenkono adikustien euro							
IN1 (Mic) Microphone Correction Curve	(Mic) Microphone Microphone calibration curve. rection Curve							
Stimulus								
Voltage Range Defini-	Measurement voltages can be defined according three different modes:							
tion	 Fix Step size: voltage raises according a fix step size 							
	 Single Voltage: a single voltage is measured per frequency 							
	 User Defined: User defines voltages to be measured at each frequency 							
	Default: Fix Step Size							


Max. Voltage

	not be measured. This parameter is only available if <i>Voltage Range Definition</i> is <i>Fix Step Size</i> . <i>Default: 5V</i>					
Neglect threshold be- low [Vp]	Voltage the measurement is continued up to, even if a measurement is failed. This parameter is only available if <i>Voltage Range Definition</i> is <i>Fix Step Size</i> . <i>Default: 2V</i>					
Start Voltage [Vp]	Lowest voltage at the input of DUT in V. The measurement starts at this value. This parameter is only available if <i>Voltage Range Definition</i> is <i>Fix Step Size</i> . <i>Default:</i> 1V					
Voltage Step Size [dB]	Step size of the voltage increment in dB. This parameter is only available if <i>Voltage</i> <i>Range Definition</i> is <i>Fix Step Size</i> . <i>Default: 1dB</i>					
Voltage	Single voltage measured per frequency. This parameter is only available if <i>Voltage</i> <i>Range Definition</i> is <i>Single voltage</i> . <i>Default: 1V</i>					
Voltage Profile	Voltages to be measured at each frequency. This parameter is only available if <i>Voltage Range Definition</i> is <i>User Defined</i> .					
Fundamental Freq. [Hz]	Vector of frequencies to be analysed in Hz. This Input can be overwritten through Calculate Fundamental Freq. parameter. Default: [20, 25, 32, 40, 50, 63, 80, 100, 125, 160] (ANSI/CEA-2010-B)					
Burst periods	Periods of fundamental tone in burst (stimulus signal). Default: 6.5					
Preloop [#]	Amount of signal loops to be run before the measurement is recorded Default: 0					
Averaging [#]	Number of measurements to average results. Possible values: - 1 - 2 - 4 - 8 - 16 - 32 - 64 - 52					
Pause	Between the measurements, the process can be paused using this parameter.					
Processing						
Smoothing bandwidth	Smoothing Bandwidth for results in frequency domain. Default: 12 (1/12 octave)					
Activate Threshold	Activate Threshold This parameter activates the use of the threshold in the measurements.					
	J					

S44

Threshold curves	 Threshold to be compared with the frequency response of the measurements. It is defined by several fields: <i>freqLimits</i>: 2x1 vector which defines frequency range where threshold is applied: [f_{LOW} f_{HIGH}] <i>freq1 - freq5</i>: Define ranges of fundamental frequencies to applied thres1 - thres5. They are defined as a 2x1 vector: [f_{LOW} f_{HIGH}] where f_{LOW} ≤ f_{RANGE} < f_{HIGH}. <i>thres1 - thres5</i>: Relative frequencies and amplitudes of the threshold curve saved in a matrix [3xN] First and second columns are minimum and maximum relative freq to apply threshold step. Third column is value of threshold in dB referenced to the peak value of the fundamental frequency. Default: ANSI/CEA-2010-B threshold curve 					
Display						
Update Result Windows	To monitor the measurement process the result windows can be updated. The Parameter defines how often the windows are recalculated. The curves can be updated after each burst, only after failed measurements or once at the end.					
Confirm Measurements	To get more process control over burst measurement the parameter confirm meas- urements can activate more user interaction. If it desired the TBM module will ask after every measurement or after all failed measurement how to continue. Thus the user has full control to continue with the next burst or repeat the last measurement.					
Frequency [Hz]	Center frequency of shown results. Default: first measurement frequency					
Voltage [V]	 Voltage value of measurement to be plotted in windows Spectrum and Time Signal. If it disabled, default value is plotted. Possible values: Max Voltage Voltages measured at Frequency Default: Max Voltage 					
Peak Value	 Visualization of plots Y1 Peak Value (u, f) and Y2 Peak Value (u, f). dB SPL vs Freq dB SPL vs Voltage Default: dB SPL vs Voltage 					
Distortion	 Data domain used in charts <i>Total Burst Distortion, 2nd Order Burst Distortion</i> and <i>3rd Order Burst Distortion</i> of signals Y1 and Y2. Possible values: Percentage dB <i>Default: Percentage</i> 					
Results reference dis- tance	Reference distance between microphone and DUT, in which the results are shown <i>Default: 1m</i>					
Results Environment	 Results referenced environment, in which the results are shown. Possible values: Full space (4 pi) Half space (2 pi) Default: Full space (4 pi) 					

Y1/Y2 Compression	Compression calculated in each signal 1 measurement related to the lowest						
	passed voltage measurement of each frequency.						
	Compression - IN2 (Mic)						
	20 Hz 25 Hz 31.5 Hz 40 Hz 50 Hz 63 Hz						
	-0.1						
	-0.2						
	g -0.3						
	-0,7						
	Voltage [V]						
Y1/Y2 Total Burst	Total burst distortion of all input signal 1 measurements referenced to fundamen-						
Distortion	tal burst signal.						
	- Total Burst Distortion - IN2 (Mic) Total Burst Distortion - IN2 (Mic)						
	- Max Passed 2V 224 V 252 V 238 V 2014 254 2014 504 V 502 V 504 V						
	5.32V 7.1V 7.96V 8.53V 10.02V 11.25V -44 KUPPEL 12.62V 14.66V 15.58V KUPPEL -44 -4						
	20 30 40 50 60 2 4 6 8 10 12 14 16 18 20 Prequency[Hz] Voltage [V]						
Y1/Y2 2nd Order Burst	2 nd order burst distortion of all input signal 1 measurements referenced to funda-						
Distortion	mental burst signal.						
Y1/Y2 3rd Order Burst	3 rd order burst distortion of all input signal 1 measurements referenced to funda-						
Distortion	mental burst signal.						
May Input Valtage	Graph with the Voltage profile of passed max SPL measurements in frequency do-						
Max Input Voltage	main.						
	Maximum passed Input Voltage vs. Frequency Profile						
	Maximum Input Voltage						
	13 KUPPE						
	12						
	4						
	3						
	20 30 40 50 60 Frequency/Hz						
	· requerry / 12						

Correction Curve	For measurements in small anechoic chambers or non-anechoic rooms it is required to use correction filter that compensates the room influence. The magnitude of this room correction filter as well as the microphone correction curve are shown in the window. Non Correction Curve $Non Correction Curve$							
Table Results + Settings	Shows warnings and error results, measurement co			-	-			h table of
	Data Collection		is anu	settings t	Ji measu	liemei	π.	
			Froquoi	осу (Ц т)	Maximu		5I/CEA2010	
	Tone Burst	Center	Frequer	ісу (н2)	SPL		A Rating	•
	20 25				103.88 109.54	110.	.65	
	31.5				115.05			
	40 50				121.58 125.41	125.	41	
	63				128.06	- 120		
	Sound pressure	referenc	ed to 1	m in Half spa	ace (2 pi)	environm	ient	
	Measurements	conditio	ns:					
	State Signal	Measur	ement I	Distance	Environn	nent	L _{MEAS} - L _{REF}	
	IN2 (Mic 2) 1 m Full space (4 pi) 6.02 dB							
	Settings and Signal properties:				_			
	Parameter	Value				ription		•
		-	Microphone IN2					
	Average	1	 Signal loops before measurement Loops measured and averaged 			_		
	Periods of tone	6.5	-	Periods of tone in burst signal				_
	f _s Order of Filter	48000	Hz -	Sample Rat Order of ba		ilter		_
	Bandwidth of Filter	1/3	oct.	Bandwidth central free	of band-p		related to	
	Smoothing	1/12	oct.	Frequency		smoothir	ng value	
	T _{Burst}	.325	S	Length of t	one burst			
Table Peak SPL		the ent	- IN2 (M	lic)	ues obta	ined ir	each mea	asurement.
		20 Hz		31.5 Hz 40 Hz	: 50 Hz			
	20 V 17.8 15.8	3V -	-	 	- - -	- - 124.16 dB		
	13.0 14.1 12.6	.6V -	-	 	-	122.96 dB 121.83 dB		
	11.2 10.0	2 V -	-	 		120.72 dB 119.6 dB		
	8.93 7.96	V -	-		116.42 dB 115.33 dB	8 118.54 dB 8 117.49 dB		
	7.1 6.32 5.64	V -	-		114.28 dB 7 dB 113.22 dB 4 dB 112.19 dB			
	5.04 5.02 4.48	V -	-		9 dB 111.14 dB	113.36 dB		
	3.99 3.56	V -	-	103.3 dB 106.4 102.29 dB 105.4	7 dB 109.09 dB 5 dB 108.07 dB	8 111.33 dB 8 110.32 dB		
	3.17 2.83	V -	96.78 dB	101.25 dB 104.4 100.27 dB 103.4	3 dB 107.04 dB 2 dB 106.05 dB	3 109.31 dB 3 108.32 dB		
	2.52			99.22 dB 102.3				
	2.24 2 V			98.18 dB 101.3 97.15 dB 100.3				

Measurement Monitor The measurement Monitor gives basic information about the last burst measurement. It shows the frequency, the voltage and the result of the threshold check. In following example the 3rd order distortion exceeds the limit so the frequency band of from 126 Hz – 189 Hz failed. Burst Response Spectrum - IN2 (Mic) f = 50 Hz Distortion/Noise Threshold Frequency 50 Hz Voltage 10.02 V AII -70 SPL p[dB (-80 -90 -100 -110 10² Frequency [Hz]

7	References			
7.1	7.1 Related Modules <u>Distortion Measurement</u> (DIS)			
		Transfer Function Measurement (TRF)		
		Multi-Tone Measurement (MTON)		
		In-Situ Room Compensation (ISC)		
7.2	Manuals	Tone Burst Measurement Manual		
7.3	Standards	ANSI/CEA-2010-A: "Standard Method of Measurement for Powered Sub- woofers", 2012, Consumer Electronics Association		
		ANSI/CEA-2010-B: "Standard Method of Measurement for Subwoofers", 2014, Consumer Electronics Association		
		ANSI/CEA-2034: "Standard Method of Measurement for In-Home Loud- speakers", 2013, Consumer Electronics Association		
		IEC 60268-21: "Sound system equipment - Part 21: Acoustical (output- based) measurements", 2018, International Electrotechnical Commission		

Find explanations for symbols at: <u>http://www.klippel.de/know-how/literature.html</u> Last updated: June 09, 202120

