C10

MSPM Lite Micro Suspension Part Measurement

Module of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.10, dB-Lab 212)

FEATURES

- Linear parameter measurement for suspension of micro-speakers, headphones, tweeters, microphones
- Resonance Frequency & Q-Factor
- Sound pressure excitation for measurement of bare membrane without attaching a voice coil

BENEFITS

- Parts testing before driver assembly
- Specification of suspension parts
- Optimal driver design in R&D

Name	Value	Unit	Description
<i>f</i> r	896.4	Hz	Resonance frequency
Q	3.74	-	Quality factor
т	0.051	g	Moving mass
С	1.787	mm/N	Mech. Compliance
K	0.559	N/mm	Stiffness
R	0.026	Kg/s	Mech. resistance

DESCRIPTION

The *MSPM Lite Micro Suspension Part Measurement* software module and hardware accessory for the KLIPPEL R&D System is designed for the measurement of the linear mechanical parameters of small suspension parts (Micro-speakers, headphones, tweeters, microphones).

The membrane is excited passively by the sound pressure in a pressure chamber and the linear parameters: resonance frequency, Q-factor, stiffness, moving mass and mechanical resistance are determined dynamically by a simultaneous measurement of displacement and sound pressure.

Article	num	nber
/		

#2500-603

CONTENT

1	Overview	. 2
2	Requirements	. 3
3	Limitations	. 4
4	Outputs	. 4
5	MSPM Bench Specification	. 4
6	References	. 5

1 Overview

Linear Parameters	By either using the Added Mass Method, or by importing a known moving mass, the linear mechanical parameters resistance <i>R</i> , stiffness <i>K</i> and moving mass <i>m</i> can be calculated from the resonance frequencies and Q factors.					
	Comment					
	Results					
	fr	896.39	Hz	Resonance frequency		
	Q	3.74	-	Quality factor		
	m	0.0176	g	Moving mass		
	C	1.7872	mm/N	Mechanical compliance		
	ĸ	0.5595	N/mm	Stiffness		
	R	0.0265	kg/s	Mechanical resistance		
	L					

2 Requirements

2.1 Hardware		
MSPM Bench (Item #2500-604)	The MSPM Bench comprises a small pressure chamber with a flexible clamping mechanism for micro suspen- sion parts. The built-in driver generates the sound pressure that can be measured by a 1/4-inch micro- phones via the provided feed-through.	
Laser Stand	 The MSPM Bench is designed to work with one of the fores 3D Scanner (Scanning Vibrometer System SCN) LST Bench (Item # 2500-310) + Translation Stage Pro Driver Stand (Item #2211-100) + Translation 	ollowing laser positioning devic- (Item #2510-004) e (Item #2300-001) n Stage (Item #2300-001)
Analyzer	Both the <i>Klippel Analyzer 3</i> and the <i>Distortion Analyzer</i> are supported to perform MSPM measurements. Both, the <i>ALS</i> (internal map) or LSX (for external amp) configuration of the KA3 are suitable.	
Laser Displacement sensor	A high-precision laser displacement sensor is required. It is recommended to use Keyence LK-H052 Laser sen- sor (Item #2103-200).	
Microphone	A 1/4" microphone is required for sound pressure measurement in the pressure chamber. The recommended microphone is the MIC 40PP-10-S1 (Item # 2400-360).	the shifting the second
Amplifier	A power amplifier is required for performing the measur the internal Amp Card is recommended. For external a Requirements of the KLIPEPL Analyzer System.	rement. For operation with KA3, mplifiers, refer to the Amplifier
Computer	A personal computer is required for performing the me general PC requirements of the KLIPPEL Analyzer System	easurement. Please refer to the
2.2 Software		
dB-Lab	The KLIPPEL dB-Lab R&D software from version 210.12 Lite.	8 is required to run the MSPM
TRF Module	The MSPM Lite control and post-processing modu performed with the Transfer Function Measurement (TR	le is based on meaurements F) module.

3 Limitations

3.1 Device Under Test							
Parameter Min Typ Max Unit							
Dimension	DUT dimension limits can be found in A12 MSPM Bench						
Resonance frequency	100		2500	Hz			
Cone break-up frequency ¹	600			Hz			
3.2 Sensors							
Laser Laser limitations can be found in A2 Laser Displacement Sensor							
Microphone	Microphone limits can be found in A4 Microphones						

4 Outputs

4.1 Result Curv	Result Curves					
Input Curves	The windo	w shows the measured transfer function $H_{X/P}$ with and without mass.				
4.2 Result Para	4.2 Result Parameters					
Parameter	Parameter Unit Description					
<i>f</i> r	Hz	Resonance frequency of suspension part				
Q	-	Quality factor of suspension part				
m	g	Moving mass				
С	mm/N	Mechanical compliance				
К	N/mm	Mechanical stiffness				
R	kg/s	Mechanical resistance				

5 MSPM Bench Specification

5.1 Specification for 1.0 and above					
5.1.1 Maximum/Minimum Ratings Min Max Unit					
Driver nominal impedance 8 Ω					
Input voltage (continuous, < 40 s) 12 V					
Input voltage (short term, < 5 s) 19 V					
Driver used: 18 Sound 6ND410					

Find more specification information in A12 – MSPM Bench.

¹ Negligible partial vibrations below the stated frequency

C10

6 References

6.1	Related Modules	 MSPM Pro – Micro Suspension Part Measurement Pro SPM Lite – Suspension Part measurement Lite QC LST – Linear Suspension Test
6.2	Manuals	MSPM Manual
6.3	Specifications	A12 MSPM Bench

Find explanations for symbols at: <u>http://www.klippel.de/know-how/literature.html</u> Last updated: December 23, 2021 Designs and specifications are subject to change without notice due to modifications or improvements.

KLIPPEL MODULE OVERVIEW FOR MOVING PARTS MEASUREMENT

C10

	SPM Lite	SPM Pro	MSPM Lite	MSPM Pro	QC LST Lite	QC LST Pro
R&D System	System 🗸		\checkmark		√5)	
QC System	QC System -			-	QC Basic o	r Standard
Base Module	TF	RF	TRF	LPM		-
Analyzer Hardware	Distortion Analyzer 2 Klippel Analyzer 3 ⁵⁾		Distortion Analyzer 2 Klippel Analyzer 3 ⁵⁾		Klippel Analyzer 3 ⁵⁾ QC Production Analyzer	
Test Bench	SPM or LST	SPM	MS	PM ⁶⁾	LST, MSPM ⁶⁾ or SPM ⁷⁾	
Laser Sensor (Default) (Measurement Range)	IL-030 (+/- 12.5 mm)	LK-H082 (+/- 18 mm)	LK-H052 (+/- 10 mm)		IL-065 (LK-H052 ⁸⁾) (+/- 10 mm)	
	LK-H022 LK-H052	LK-H052	LK-H022 (+/- 3 mm) LK-H082 (+/- 18 mm) LK-G32		LK-H022 LK-H052	
Laser Sensors (Alternative) (Measurement Bange)	LK-H082	(+/- 10 mm) LK-H152 (+/- 40 mm)			LK-H082	
Nalige/	LK-H152	(+)- 40 mm)			LK-H152	
	LK-G32		(+/- 5 mm)		LK-G32	
Microphone	\checkmark	-	,	/	Opt.	✓
Linear Parameters f ₀ , Q, k, c, m, r	~	- (only k _{eff})	✓ (only effective)		✓ (<i>m</i> import, no r)	✓ (<i>m</i> & <i>k</i> relative, no <i>r</i>)
Nonlinear Parameters <i>K</i> (x), <i>C</i> (x)	-	✓	- 🗸			-
Mass Import	✓	-	\checkmark		✓	
Added Mass	✓	-	\checkmark	-		-
DUT Ø in mm	30 - 222 ¹⁾ (490 ²⁾)	30 – 222 ¹⁾	< 70		30 - 222 ¹⁾ (490 ²⁾) <70 ⁸⁾	
Frequency Range in Hz	$1 - 100^{4)}$ (200 ³⁾)	1-100	100 -	2500	1 – 100 ⁴ 100 –	⁴⁾ (200 ³⁾) 2500 ⁸⁾

1) Standard Ring Set

2) SPM Bench (with custom ring)

3) LST Bench

4) SPM Bench

5) Min. dB-Lab Release 210

6) MSPM Bench requires additional equipment for laser positioning (SCN Vibrometer, LST-Bench or Pro-Stand)

7) For DUTs with $\emptyset >= 222 \text{ mm} / <= 490 \text{ mm}$, customized clamping rings required

8) MSPM Bench