The nonlinear stiffness $K(x)$ and the reciprocal compliance $C(x)$ of any suspension parts (spider, surrounds, cones) and passive radiators (drones) are measured versus displacement x over the full range of operation. A dynamic, nondestructive technique is developed which measures the parts under similar condition as operated in the loudspeaker. This guarantees highest precision of the results as well as simple handling and short measurement time. Suspension parts are fixed in the measurement bench by using a universal set of clamping parts (rings, cones, cups) fitting to any size of circular geometries between 1.5 – 9 inch diameter. Special clamping parts for other geometries can be manufactured at low cost. The working bench excites pneumatically the suspension to vibration at the resonance frequency related to the stiffness and the mass of the suspension and inner clamping parts. The nonlinear stiffness is calculated from the measured displacement by using modules of the KLIPPEL R&D SYSTEM. The measured parameter is required for specifying the large signal properties of the suspension parts and to detect asymmetrical and symmetrical variation which are the cause for instable vibration behavior and nonlinear distortion.
Theory

Static techniques

The EIA standard RS 438 describes a method for measuring the stiffness of a spider at a single displacement created by hanging a known mass from a cap at the inner diameter of the spider. While this method serves a purpose in providing a quickly-obtained estimation of spider stiffness using relatively inexpensive equipment, the measurement does not yield any information about the nonlinear behavior of the spider. Furthermore, this method may be prone to measurement error due to its highly manual nature. In the meantime additional computer controlled methods are developed that provides the stiffness $K(x)$ versus displacement by using also a static technique. Since the stiffness $K(x,t)$ of the suspension depends on displacement x and time t there are discrepancies between static measurement and dynamic application of suspension part:

1. The stiffness $K(x)$ measured statically at peak displacement $x=\pm X_{peak}$ is usually lower than the stiffness measured at this point with an audio-like signal. Generating a static displacement of $x=\pm X_{peak}$ the required force decreases slowly with time (creep).

2. The stiffness $K(x)$ measured statically at rest position $x = 0$ is usually higher than the stiffness found by dynamical techniques. The cause of this phenomenon is discussed below.

Furthermore, other practical concerns (reproducibility, practical handling, time) gave reason for the development of a dynamical method:

Theory of the dynamic technique

The driver generates a volume velocity q_D that divides into three parts as shown in the equivalent circuit above. The volume velocity q_B flows into the volume of the box, q_L is leaving the box through leaks and the volume velocity q_{PR} produces the force F driving the suspension part under test

$$F = K(x) \cdot x + R \cdot \frac{dx}{dt} + m \cdot \frac{d^2 x}{dt^2}.$$
The effective area S_s of the suspension part (spider) is usually not identical with the geometrical area because the material of a spider is porous. The moving mass m (formed by the inner clamping parts such as slide, cone, cup and nuts together with the moving part of the suspension and the air load) and the stiffness $K(x)$ form a resonating system. The resonance frequency f_r is defined as the frequency where the displacement becomes maximal. The resonance frequency f_r corresponds with an effective stiffness

$$K_{\text{mean}} = m(2\pi f_r)^2$$

using the moving mass m.

At resonance the force accelerating the mass m equals the restoring force of the suspension. The driving force F compensates for the mechanical and acoustical losses represented by resistance R. Using a sufficiently large measurement box giving a high acoustical compliance C or sufficient leakage giving a low resistance R_L the stiffness $K(x)$ can be calculated from the displacement measured at resonance and the known moving mass m. The displacement x is measured by using an inexpensive triangulation laser as provided by the KLIPPEL system. The mass m is approximately equal to the total mass of the suspension and inner clamping parts weighed before. The part of the suspension which is clamped and can not move is neglected. This simplification can be done, as the additional mass of the inner clamping parts is much larger than the mass of the suspension part.

Requirements

Requirements

To measure the nonlinear stiffness of a spider the following equipment is required:

- Suspension Part Measurement Bench
- Suspension Part Software (SPS)
- Distortion Analyzer (DA1 or DA 2) + Cables
- Software modules Transfer Function (TRF)
- 2 clamping rings (or the ring set)
- 1 cone (or the cone set)
- 1 cup (or the cup set)
- slide, 2 nuts
- Power amplifier
- Scales for measuring the mass

Clamping the Suspension Part

Dimensions of the Suspension

1. Measure the inner diameter D_i of the suspension part
2. Measure the outer diameter D_o of the suspension part (without rim)

Find the Cone

3. Look in the look-up table (User’s Guide) for cones to find the optimal cone (for example 3) having a inner diameter D_C which is just smaller than the measured inner diameter D_i.

AN 26 Nonlinear Stiffness of Suspension Parts

Application Note KLIPPEL R&D SYSTEM page 3
Find the Cup

4. Look in the look-up table (User's Guide) for cups to find the optimal cup (for example A3) having an inner diameter D_U which is just larger than the measured inner diameter D_i.

Inner Clamping

5. Clamp the inner rim by using the slide, cone, cup and two nuts.

Note: Use an additional mass to keep the centre of gravity between the clamping points of the outer rim.

6. Weigh the surround with the inner clamping.

Find the lower clamping ring

7. Look in the look-up table for rings to find the lower clamping ring (for example B3) having an inner diameter D_R which is just larger than the measured outer diameter D_o.

Find the lower ring set

8. Complete the lower ring set by selecting all rings which have the same character in the nomenclature (for example B) and are larger than the lower clamping ring (for example B4, B5, B6) to complete the lower ring set.

Find the upper clamping ring

9. Look in the look-up table to find the one-step larger ring used as upper clamping ring (for example C3).

Outer Clamping

10. Bring the clamping platform into horizontal position for easy handling
11. Insert the set of lower rings into the clamping platform
12. Put the slide with the clamped suspension on the guiding rod. Make sure that the suspension part is in horizontal position when clamping. Support manually if needed to prevent any sagging due to gravity.
13. Fix the upper ring to clamp the outer rim

Measurement Position

15. Bring the clamping platform into vertical position and close the bench
16. Mount the laser rod and adjust the laser sensor
17. Check slider for easy movement on the sliding rod.
Measurement of the Nonlinear Stiffness

Procedure

Create a new object and select **Suspension Part** from the object template list. The template contains 2 operations with the TRF module and 2 special SPM operations realized with the Calculator (CAL) module.

1. **TRF Amplitude Adjustment**

 Start with the first TRF measurement **Amplitude Adjustment** after preparing the Measurement Bench according to the explanations given above. The TRF performs a frequency sweep in the range from 3 Hz to 30 Hz. When run, the result window "Fundamental + Harmonics" shows the fundamental component of the displacement amplitude of the Suspension Part under test over the frequency. It should produce a distinct resonance peak. Adjust the voltage until the displacement desired for the measurement is reached. For very stiff Suspension Parts it might be necessary to attach additional mass to achieve sufficient displacement. Keep the resonance frequency below 25 Hz. Repeat the sweep if necessary.

 Note that the Y-axis is in [mm] rms. To get the peak value, just multiply by 1.4.

2. **CAL Frequency Range**

 The settings of the previous TRF operation have to be exported to the clipboard using the Export Property Page. Select the input variable **TRF_Params** in the Input property page and click the Paste button. Then go back to the first TRF measurement and copy the curve **Fundamental**, displayed in the result window, to the variable **Fundamental** in the Input property page of the second **CAL Frequency Range** and run it.

 The window **Results Variables** shows the resonance frequency found at the given voltage and the frequency range for the frequency sweep to perform.

3. **TRF Measurement Sweep**

 The settings for the **Measurement Sweep** are exported to the clipboard by the previous MAT operation automatically. Click the **Import from Clipboard** button in the Im/Export property page to set the respective parameters. Run the operation. This operation performs a narrow band sweep that brings the Suspension Part under test into resonance at the desired amplitude.

4. **CAL k(x) Estimate K(x)**

 Copy the displacement curve from window **Y2(t)** measured during the previous operation **TRF Measurement Sweep** to the variable **Displacement** in the property page Input. Assign the mass of the Slide + Suspension Part assembly to variable **M**. The specification of the variable **Nb_of_harmonics** is optional and is calculated automatically when not assigned (see explications below). Run the operation. One period of the displacement signal at resonance is derived from the measurement sweep and is used for calculating the stiffness K(x).

Modifications of predefined settings

| Order of series expansion | The order of the series expansion of the stiffness curve K(x) depends on the number of harmonics (including the fundamental) accounted for during the calculation.

 If the value **Nb_of_harmonics** in the Property Page Input is not specified then this value is calculated automatically from the spectrum (see Result Curve 4) of the measured displacement in operation 4 **CAL k(x) from Sweep**.

 Alternatively, the value of **Nb_of_harmonics** can be assigned by hand in the property page Input. It is recommended to verify the SNR in the spectrum of the signal which can be observed in the result window **Result Curve 4** in operation 4 **CAL k(x) from Sweep**. |
Example

TRF Amplitude Adjustment

Fundamental + Harmonic distortion components

Displacement X

Signal Y2 vs time (Channel 2)

The fast sweep measurement is used to find the rms value of the displacement at the resonance frequency. The figure above shows the amplitude response of displacement versus frequency. The peak at 11 Hz corresponds with the resonance frequency f_s and corresponds with a $K_{mean} = 400$ N/m approximately. The variations at lower frequencies are artifacts due to the high sweeping speed. The user may adjust the voltage at the driver terminals to operate the suspension part in the appropriate working range. Note the Y-axis gives [mm] rms. Peak values are 1.4 time the given rms value.

3 TRF Measurement Sweep

The operation 2 CAL Frequency Range determines optimal setup parameter for the operation 3 TRF Measurement Sweep which measures the displacement around the resonance frequency of the suspension. The figure above shows the displacement time signal swept from 4 to 12 Hz. The displacement rises slowly up to [-16…+10] mm peak but decreases rapidly after the resonance. This is caused by the suspension nonlinearity which causes a bifurcation and a jumping effect to lower amplitudes. The time signal also reveals a dc part in the displacement generated by the stiffness asymmetries of the suspension.
The operation 4 CAL K(x) from Sweep calculates the stiffness curve K(x) versus displacement as shown in the figure. For a positive displacement x=+11 mm the stiffness is approximately 30 times higher than at the rest position x=0. Please note the distinct asymmetry of the curve. The stiffness at negative displacement x=-11 mm is only 16% of the stiffness at positive displacement x=+11 mm. Under dynamic operation an ac-signal is partially rectified and a negative dc-component is generated.

The dashed blue curve shows the mean stiffness K_{mean} of the suspension in the working range [-17 mm to 11 mm]. This value depends on the amplitude and corresponds with the effective resonance frequency found in the large signal measurement. This value is simple and convenient for QC applications. It can also calculated directly from the resonance frequency f_s and the moving mass m.

Activating the window Result Curve 2 shows the nonlinear compliance C(x) versus displacement x which is identical with the inverted stiffness. Note that the stiffness curve reveals the limiting effect more clearly than the compliance curve and is more recommended for graphical representation.

Phenomena

K(x=0) varies with amplitude

Exciting a suspension part (especially spiders) by an ac signal with a peak amplitude X_{peak} the stiffness K about the rest position x=0 will depend on the peak displacement occurred in the last instance. At high amplitudes the stretching of the corrugation roles causes a temporary deformation of the fiber structure and makes the suspension softer at medium amplitudes. However, this kind of deformation is reversible. It stays only for multiple periods of the ac signal and recovers completely after a few seconds. Thus the effect can not be measured by using a static technique. This effect depends on the geometry and impregnation of the suspension material. It increases the nonlinearity of the suspension which becomes not only stiffer for larger displacement but also softer between the excursion maxima.
The dynamic measurement technique also reveals the dc displacement caused by asymmetries of the suspension. The ac displacement is partly rectified and produces a dc component which operates the suspension at a region of lower stiffness. The example shows a positive dc-displacement of 1.5 mm generated by a cone where the surround has a significant asymmetry at negative displacement.

The dynamic measurement technique is also convenient for investigation of the break in and other ageing effects of the suspension. The example shows the change of the stiffness versus time while permanently exciting the spider with the audio-like test signal and performing measurements after 15 min intervals. It is interesting to see that the stiffness at higher displacements stays constant but the stiffness at the rest position.

More Information

Papers

KLIPPEL USER’S GUIDE
Suspension Part Measurement (SPM)

Application Notes
Separating Spider and Surround, Application Note 2 (10/2001)
Adjusting the Mechanical Suspension, Application Note 3 (10/2001)

updated April 4, 2012