Multitone Distortion Measurement

Application Note to the KLIPPEL R&D SYSTEM

DEPRECATED MATERIAL – LPM TESTING NOW REPLACED BY MTON MODULE

Check Klippel website: MTON Module (spec and manual)

Multi-tone excitation signals are optimal for the measurement of speakers similar to normal working conditions. Like a regular audio signal it generates harmonic and all kinds of intermodulation distortion. Using the module Linear Parameter Measurement (LPM) of the Klippel R&D System a multi-tone excitation signal is generated and the voltage, current, voice coil displacement and radiated sound pressure may be measured and analyzed simultaneously. Typical distortion pattern produced by factor Bl(x), compliance $C_{ms}(x)$, inductance $L_e(x)$, Doppler and nonlinear radiationare discussed. They may be interpreted as fingerprints of the dominant nonlinearities in transducers.

CONTENTS:

Measurement Principle	2
Distortion of a woofer system	2
Using the Linear Parameter Measurement (LPM)	2
Setup Parameters for the LPM Module	3
Example	4
More Information	5

updated 19th October 2011

Measurement Principle		
Signal	A multi-tone signal is a steady-state signal comprising a multitude of tones generated at known frequencies. A logarithmic spacing of the tones is used typically. The number is usually limited to $3 - 9$ tones per octave to have enough free bins for the distortion analysis. The amplitude of the tones can be adjusted to represent a normal audio signal. However, the phase relationship of the tones will determine the generation of the intermodulation components. It is important that all tones are present at each time instant to have nonlinear interactions between the tones. This can be accomplished by using a random phase between the excitation tones.	
Measured signals	It is very useful to measure not only the sound pressure output but also the voltage and current at the transducer terminals and the voice coil displacement. The inspection of the voltage signal shows the distortion of the power amplifier used. The dominant nonlinearities such as $BI(x)$, $C_{ms}(x)$ and $L_e(x)$, Doppler Effect are directly related with the voice coil displacement. The comparison between the current and sound pressure spectrum allows identifying the cause of distortion.	
Spectral analysis	The measured signals are subject to a FFT analysis. Since the multi-tone excitation signal has a sparse spectrum the nonlinear distortion may be measured in the free bins of the FFT spectrum. It is useful to perform an additional measurement without excitation to determine the magnitude of noise floor caused by external or internal sources.	
Working range	The maximal peak to peak displacement of the coil is the most important measurement condition. It is also recommended to measure the rms value of the voltage and current at the terminals.	
Interpretation	The amplitude of the reproduced multi-tone signal represents the fundamental response. The nonlinear distortion are generated by complicated interactions between the fundamental components. It is very complicated to identify them as harmonic and intermodulation distortion. However, they are more a nonlinear fingerprint of the speaker showing the amplitude of the distortion in an audio-like signal. The table below gives a summary on typical distortion responses in sound pressure and electrical input current for a common woofer system.	

Distortion of a woofer system						
	CURRENT SPECTRUM			SOUND PRESSURE SPECTRUM		
Nonlinearity	<i>f</i> = <i>f</i> _s	f _s < f < 10f _s	f > 10fs	$f = f_s$	f _s < f < 10f _s	f > 10fs
force factor	high	falling with f	small	high	high	high
compliance	high	Small	negligible	high	small	negligible
inductance	small	High	high	small	high	high
Doppler	no	No	no	negligible	small	high
Radiation	no	No	no	negligible	small	high

Using the Linear Parameter Measurement (LPM)

Transducer	Any transducer (drivers, systems, woofer, tweeter, horn loudspeaker) may be measured.
Loudspeaker Setup	The laser sensor is adjusted to the diaphragm. A dot of white ink may be used to increase the signal to noise ratio of the measured displacement signal. If the driver is mounted in the driver stand the microphone should be in the near field.

٦

Paquiramonte	The following hardware and software is required
Requirements	Distortion Analyzer + PC
	 Software module Linear Parameter Measurement (LPM) + dB-Lab
	Laser sensor head and laser controller
	Microphone
Setup	Connect the microphone to the input IN1 at the rear side of the Distortion Analyzer. Set the speaker in the approved environment and connect the terminals with SPEAKER 1 . Switch the power amplifier between OUT1 and connector AMPLIFIER .
Proparation	Open the database within dB-Lab
Freparation	 Create a new object DRIVER and assign a new LPM operation based on the operation template "LPM multitone dist. SP1 AN16"
Magguramont	1. Check the excitation level, drive the speaker in the nonlinear domain.
measurement	 Start the measurement "LPM multitone distortion SP1", ignore any warning regardnbing too high distortion.
	3. Open the result window X(t) . Read the maximal peak to peak value.
	 Open the result window voltage(f) spectrum and evaluate the distortion of the amplifier.
	5. Open the result window Current (f) spectrum and evaluate the distortion from voice coil inductance $L_e(x)$ produced at high frequencies.
	 Open the result window p(f) spectrum and asses the distortion in the radiated sound pressure signal.
	 Compare the distortion in sound pressure and current at different frequencies to identify clues for the sources of distortion.

Setup Parameters for the LPM Module		
Template	Create a new Object, using the operation template LPM multitone distortion SP1 AN16 in dB-Lab. If this database is not available you may generate LPM multitone distortion SP1AN16 based on the general LPM module. You may also modify the setup parameters according to your needs.	
Default Setting	 Open the property page STIMULUS. Set the maximal frequency to up to 10 kHz. Set the relative resolution to 1/10 lines per octave beginning at 21 Hz. Set the voltage at Speaker Terminals to 4 V rms. Increase voltage, if the loudspeaker is not in the nonlinear domain (strong distortion visible),and set the number of averaging to 1. 	
	 Open the property page Input. Set the routing to Speaker 1. Enable the laser and microphone as external sensors and the noise floor measurement. 	
	Open the property page Method. Enable the laser measurement method and select the driver in free air.	

More Information		
Related Application Notes	"3D Intermodulation Distortion Measurement", Application Note 8	
	"3D Harmonic Distortion Measurement", Application Note 9	
Related Specification	"LPM", S2 "DIS", S4	
Software	User Manual and online help system of the Klippel R&D System.	

Klippel GmbH Mendelssohnallee 30 01309 Dresden, Germany

www.klippel.de info@klippel.de TEL: +49-351-251 35 35 FAX: +49-351-251 34 31