Measurement of Peak Displacement X_{max} AN 4 (Performance based method) Application Note to the KLIPPEL R&D System (Document Revision 1.1) ### **DESCRIPTION** Using the 3D Distortion Measurement module (DIS) of the KLIPPEL R&D SYSTEM the maximal peak displacement Xmax of a driver is determined by assessing the harmonic and intermodulation distortion in the radiated sound pressure (near field). The new performance-based method is an amendment of the technique AES 2 (1984) and subject of current discussion. It can be accomplished by straightforward techniques defined in the IEC 60268. #### **CONTENT** | 1 | Performance based definition of X _{max} | 2 | |---|--|---| | 2 | Using the 3D Distortion Measurement (DIS) | 3 | | 3 | Setup Parameters for the DIS Module | 4 | | 4 | Example | 5 | | 5 | More Information | 6 | ## 1 Performance based definition of X_{max} | Old Definition
(AES 2-1984) | The current standard defines "the voice-coil peak displacement at which the "linearity" of the motor deviates by 10%. Linearity may be measured by percent distortion of the input current or by percent deviation of displacement versus input current. The manufacturer shall state the method used. The measurement shall be made in free air at fs." | |--------------------------------------|---| | What is wrong
with
AES 2-1984? | The old method of defining the peak displacement X_{max} Gives no clear definition of peak displacement Gives multiple or infinite values of X_{max} Considers suspension nonlinearity only Fails in assessing motor linearity | | New Definition
(IEC 62458) | The voice-coil peak displacement X_{max} at which either the total harmonic distortion d_t or the n^{th} -order modulation distortion (where $n=2$ or 3) exceeds 10% in the sound pressure radiated by the driver in free air excited by the linear superposition of a first tone at the resonance frequency $f1=f_S$ and a second tone $f_2=8.5f_S$ with an amplitude ratio of 4:1. The total harmonic distortion d_t assesses the harmonics of f_1 and the modulation distortion are marginally by the modulation companies f_{T-1} of according to 150.60368. | | Practical Usage | distortion are measured by the modulation components f_2 ± nf_1 according to IEC 60268. 1) Measure resonance frequency f_S of the driver | | v | 2) Operate driver under free-field condition and excite driver with a two-tone signal f₁=f_S and f₂=8.5 f_S and amplitude ratio U₁=4*U₂ and perform a series of measurements with varied amplitudes U_{start} < U₁ < U_{end}. | | | 3) Measure sound pressure in the near-field and perform a spectral analysis to measure the amplitude of the fundamental P(f ₁) and P(f ₂), of the harmonic components P(k*f 1) with k= 2, 3,,K and of the summed-tone component P(f ₂ +(n-1)*f ₁) and difference-tone components P(f ₂ -(n-1)*f ₁) with n=2, 3 versus amplitude U ₁ . Measure the peak displacement X(f ₁) versus amplitude U ₁ . | | | 4) Calculate the total harmonic distortion $d_t = \frac{\sqrt{P(2f_1)^2 + P(3f_1)^2 + + P(Kf_1)^2}}{P_t} *100\%$ | | | the second-order modulation distortion | | | $d_2 = \frac{P(f_2 - f_1) + P(f_2 + f_1)}{P(f_2)} * 100\%$ | | | and the third-order modulation distortion | | | $d_3 = \frac{P(f_2 - 2f_1) + P(f_2 + 2f_1)}{P(f_2)} *100\%$ | | | according to IEC 60268 as a function of U ₁ . | | | 5) Search for minimal value $U_{10\%}$ in the range $U_{start} < U_{10\%} < U_{end}$ where the harmonic distortion d_t , the second- or third-order modulation distortion d_2 or d_3 , respectively, reach 10%. | | | 6) Search for the peak displacement X_{max} corresponding to the amplitude U_{10} %. | | | Search for the peak displacement x_{max} corresponding to the amplitude $U_{10}\%$. | KLIPPEL R&D SYSTEM Page 2 of 6 # 2 Using the 3D Distortion Measurement (DIS) | Distortion Analyzer + PC Software module 3D Distortion Measurement (DIS) + dB-Lab Laser sensor head for measuring the displacement Microphone for near field measurement | |---| | Connect the microphone to the input IN1 at the rear side of the DA. Mount the driver in the laser stand and connect the terminals with SPEAKER 1. Switch the power amplifier between OUT1 and connector AMPLIFIER. Adjust the laser head to the diaphragm and bring the microphone in the near field of the driver. | | Create a new database within dB-Lab or add a new object to your current database. Create a new object DRIVER based on the object template "Xmax10% distortion" | | AN4" provided in the dB-Lab object templates. If you know the resonance frequency of the driver (from LPM or LSI) you may skip the first measurement. Alternatively you may use the DIS measurement 1st measurement for measuring the frequency response of the input current. | | Start the measurement "1 DIS Find resonance fs " Search for the frequency f_s in window fundamental where the amplitude is minimal. | | Start measurement "2 DIS Distortion measurement " On property page DISPLAY make sure "Signal at IN 1" is selected as State Signal. Window 2nd INTERMOD, %: Read U_{d2}=U₁ where d₂=10% by using the cross cursor (may be activated by using the right-mouse button). Window 3rd INTETMOD,%: Read U_{d3}=U₁ where d₃=10% by using the cross cursor Window TOTAL HARMONIC,%: Read U_{dt}=U₁ where d_t=10% by using the cross cursor →If both d₂ < 10 % and d₃ < 10% and d_t < 10 % then increase U_{end} and start from point 1 of the 2nd measurement Search for U_{min}=MINIMUM(U_{dt}, U_{d2}, U_{d3}) (see Example) Open PP DISPLAY and select signal DISPLACEMENT Open window FUNDAMENTAL Read X_{rms} for U_{min} by using the cross cursor Calculate peak value X^{max}=1.4*X_{rms} | | | KLIPPEL R&D SYSTEM Page 3 of 6 # 3 Setup Parameters for the DIS Module | Template | create a new Object, using the object template X_{max} 10% distortion AN 4 in dB-Lab. Then the two measurements are already customized for the assessment of Xmax. If this emplate is not available you may generate two 3D distortion measurements (DIS) and modify the setup parameters according to this table. | |-----------------------------|---| | 1 st Measurement | Open the PP STIMULUS . Select mode HARMONICS . Switch off Voltage Sweep. Set U to 1 V_{rms} . Switch on the Frequency Sweep with 100 points spaced logarithmically between 20 Hz and 1000 Hz. Activate additional excitation time of 0.1 s before measurement. | | | Open PP Protection . Disable temperature measurement and any protection. | | | Open PP Input. Select US voltage speaker 1 (Y1) and IS current speaker 1 (Y2). | | | Open PP Display . Select CURRENT SPEAKER 1 as State signal. | | 2 nd Measurement | Open the PP STIMULUS . Select mode Harmonics + Intermodulations (f2) . Switch on Voltage Sweep with 50 points spaced linearly between 1 V and 8 V. Make sure the signal level is appropriate for loudspeaker. Set ration $U_2/U_1 = -12$ dB. Switch off the Frequency Sweep and set f_1 to f_5 . Set ratio $f_1/f_2 = 0.118$. Activate additional excitation time of 0.1 s before measurement. | | | Open PP Protection . Enable temperature measurement and set threshold of maximal increase of voice coil temperature to 50 K. Enable mechanical protection in IN 1 and Laser and set threshold of total harmonic distortion to 10.5 %. | | | Open PP Input. Select MIC IN 1 (Y1) and X Displacement (Y2). | | |) Open PP Display . Select SIGNAL IN1 as State signal. | KLIPPEL R&D SYSTEM Page 4 of 6 ## 4 Example KLIPPEL R&D SYSTEM Page 5 of 6 AN4 The minimal voltage $U_{min} = U_{d3}$ is determined by the third-order modulation distortion. The RMS amplitude of the voice coil displacement of tone f_1 versus amplitude U_{1} . mm. The minimal voltage $U_{min} = U_{d3}$ is determined by the third-order modulation distortion. For $U_{min} = 4.65 \ V_{rms}$ a displacement of $X_{RMS} = 1.9 \ mm$ is read. The peak displacement of the driver is $X_{max} = 2.66 \ mm$. ## **5** More Information | Papers | W. Klippel, "Assessment of Voice Coil Peak Displacement X_{max} , paper in presented at the 112th Convention of the Audio Engineering Society, 2002 May 10 $-$ 13, Munich, Germany. Updated version on http://www.klippel.de/know-how/literature/papers.html | |--------------------------|---| | Application
Notes | "Measurement of Displacement Limits (parameter-based method)", AN5 of the KLIPPEL R&D SYSTEM | | Related
Specification | "DIS", S4 | | Software | User Manual for Distortion R&D System. | Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: 08.01.16 KLIPPEL R&D SYSTEM Page 6 of 6